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The possibility of credible climate forecasts for several years ahead -
on the decadal time scale - has received considerable public and economic
attention. Scientific studies quantify the credibility of such forecasts by
evaluating the average predictive quality (skill) over the last 50-60 years
(in so-called hindcasts). Decadal hindcasts of surface temperatures were
shown to be on average particularly skillful in the North Atlantic region.
However, the reason for the high skill of these hindcasts is still unclear.
Meanwhile, North Atlantic sea surface temperatures (SSTs) are on the
decadal time scale strongly influenced by subpolar ocean heat transport
(OHT) variability. I here connect OHT variability and SST predictability
and test whether the knowledge of the strength of subpolar OHT at the
beginning of a single SST forecast can improve its credibility. By using
initialized global climate simulations of the twentieth century, I confirm
previous studies in that OHT variability influences SST variability for
3-10 years. A characteristic SST pattern of warm anomalies in the north-
east Atlantic and cold anomalies in the Gulf Stream region emerges after
strong OHT phases and vice versa. This pattern originates from per-
sistently growing upper ocean heat content anomalies that arise from
Southward propagating OHT anomalies in the North Atlantic. Extend-
ing previous work, I analyze strong and weak OHT phases at 50°N sep-
arately. This reveals an asymmetry between strong and weak phases of
ocean heat transport: When subpolar OHT is strong, North Atlantic SSTs
show stronger and more persistent decadal anomalies than when subpo-
lar OHT is weak.

For the first time I show that the hindcast skill of northeast Atlantic
SSTs 3-10 years ahead is linked to the characteristic SST pattern, and
therefore OHT variability in the subpolar North Atlantic. When subpolar
ocean heat transport is strong at the initialization of a hindcast, the skill

Abstract
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of SST hindcasts in the northeast Atlantic 2 to 9 years into the future is
significantly higher than when the ocean heat transport is weak at ini-
tialization. The asymmetric effect of strong and weak phases of subpolar
OHT on SST variability that preconditions asymmetric hindcast skill is
robust in non-initialized versions of the same climate model. The skill of
decadal SST predictions therefore robustly depends on the climate state
at the start of a prediction.

I show in this dissertation that hindcast skill changes over time and
thus cannot be immediately translated into the credibility of a forecast.
Instead, the credibility of a decadal climate forecast depends on the cli-
mate state at the start of the forecast. For North Atlantic SST forecasts,
the strength of subpolar North Atlantic OHT at the start of the forecast
can be used to estimate its credibility. Findings presented in this disser-
tation suggest that physical mechanisms might be used to improve con-
ventional estimates of the credibility of a climate forecast on the econom-
ically and politically relevant decadal time scale.

ABSTRACT
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Die Möglichkeit, das Klima für einige Jahre glaubhaft
vorherzusagen, erweckte zuletzt umfangreiches öffentliches und
ökonomisches Interesse. Wissenschaftliche Studien quantifizieren die
Glaubwürdigkeit solcher Vorhersagen, indem sie die durchschnittliche
Vorhersagequalität der letzten ca. 50 Jahre diagnostizieren. Solche
dekadischen Vorhersagen von Erdoberflächentemperaturen in der Nor-
datlantikregion zeigten besonders hohe Qualität. Der Grund für diese
hohe Vorhersagequalität in der Nordatlantikregion ist bisher jedoch
unbekannt. Indes beeinflussen Schwankungen im Transport von Wärme
aus dem tropischen in den subpolaren Nordatlantik (ocean heat transport,
OHT) nordatlantische Wasseroberflächentemperaturen (sea surface tem-
peratures, SSTs) für etwa zehn Jahre. In dieser Dissertation zeige ich
Verbindungen von niederfrequenten Schwankungen des OHT zu der
Qualität dekadischer SST-Vorhersagen auf. Weiterhin diskutiere ich, wie
die Kenntnis der Stärke des OHT im subpolaren Nordatlantik zu Beginn
einer einzelnen SST Vorhersage genutzt werden kann, um die erwartbare
Qualität dieser Vorhersage abzuschätzen.

Mit Hilfe initialisierter numerischer Modellsimulationen des
gesamten zwanzigsten Jahrhunderts bestätige ich frühere Studien,
indem ich zeige, dass OHT-Schwankungen die Variabilität von SSTs für
bis zu 3-10 Jahre beeinflussen können. Ein charakteristisches SST-Muster
mit warmen Temperaturen im nordost-Atlantik und kalten Tempera-
turen in der Golfstromregion erscheint nach starken OHT-Phasen und
anders herum. Dieses Muster entsteht aus stetig wachsenden
Wärmeanomalien im oberen Ozean, welche aus OHT-Anomalien resul-
tieren, die sich im Nordatlantik südwärts fortpflanzen. Basierend auf
diesen Analysen erweitere ich bisherige Studien und analysiere starke
und schwache OHT-Phasen separat. Dies offenbart einen asym-

Zusammenfassung
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metrischen Effekt starker und schwacher OHT-Phasen: starke OHT
Phasen bei 50°N beeinflussen SSTs stärker und nachhaltiger als
schwache. Ich zeige hier erstmals, dass die Qualität von SST-Vorhersagen
für 3-10 Jahre in die Zukunft mit diesem charakteristischen SST-Muster,
und somit mit ozeanischem Wärme transport, zusammenhängt. Wenn
OHT zu Beginn einer Vorhersage in einer starken Phase ist, ist die
Vorhersagequalität von SSTs für 2-9 Jahre in die Zukunft signifikant
besser, als wenn der Ozean zu Beginn der Vorhersage wenig Wärme
transportiert. Diese Asymmetrie ist robust in unterschiedlichen Realisa-
tionen des selben Klimamodells. Die Qualität dekadischer SST-Vorher-
sagen hängt daher vom klimatischen Zustand zu Beginn der Vorhersage
ab.

Ich zeige in dieser Dissertation, dass die Qualität dekadischer Tem-
peraturvorhersagen zeitabhängig ist, und daher Qualitätsabschätzungen
für die Vergangenheit für Vorhersagen der Zukunft nicht anwendbar
sind. Tatsächlich bedingt der klimatische Zustand zu Beginn einer
Vorhersage deren Qualität. Bei der dekadischen Vorhersage nordatlantis-
cher SSTs kann der ozeanische Wärmetransport im Nordatlantik als Kri-
terium zur Abschätzung der erwarteten Qualität einer Vorhersage
genutzt werden. Ergebnisse, die ich in dieser Dissertation präsentiere,
deuten darauf hin, dass physikalische Mechanismen genutzt werden
können, um konventionelle Abschätzungen der Qualität von Klima-
vorhersagen für den ökonomisch und politisch interessanten dekadis-
chen Zeitraum zu verbessern.
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We do not know how warm or cold it is going to be in Europe
in 8 years. Temperature predictions for the next few months or years -
on the seasonal-to-decadal timescale - are still largely uncertain and sub-
ject to intense scientific debate. As a result, predictions on this time
scale have received increasing scientific attention in the past decade,
not just because of the scientific challenge, but also because predicting
the climate on the (sub-)decadal time scale is particularly interesting for
both policy makers and economic decision makers. It remains largely
unknown, however, to which degree a single forecast of the temperature
development over the next few years can be expected to be credible.
In this dissertation, I present an approach to estimate the credibility of
a forecast of North Atlantic surface temperatures several years into the
future, on the decadal time scale, using a physical process in the ocean.

Without an estimate of the credibility of a climate forecast, any fore-
cast is essentially useless. This credibility is in climate prediction stud-
ies usually referred to as skill. In the absence of knowledge of the future,
series of predictions are commonly performed for the past (in so-called
hindcasts) and evaluated against known past climate (e.g. Boer et al.,
2016). The hindcast skill that is found for the past is then used as an esti-
mate of how reliable decadal predictions are. There is still substantial
scientific discourse on the reliability of decadal predictions after more
than 10 years of research (e.g. Marotzke et al., 2016). In the face of the
high confidence scientists put into both weather forecasts (on the time
scale of days) and climate projections (on the scale of multiple decades to
centuries), this dispute about the reliability of decadal predictions might
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appear puzzling. However, the climate variability on a decadal time scale
results from a combination of factors that makes setting up successful
hindcast climate simulations particularly challenging.

Weather forecast is considered an initial value problem (e.g. Pielke Sr.
et al., 1999). Thus, the quality of a weather forecast mainly depends on
using the correct current climate state to start the weather model from.
If the initial conditions are correct and the computational model repro-
duces the physics of the atmosphere somewhat accurately, weather fore-
casts are likely to be accurate for several days into the future. The notion
of weather forecast as an initial value problem is also mirrored in the
expectation towards it: a weather forecast is commonly expected to accu-
rately capture weather patterns on very small spatial scales of only few
kilometres.

Figure 1.1

Seasonal-to-decadal climate predictions are both an initial value problem
and a forced boundary problem (from Boer et al., 2016).

For a successful climate projection, starting the climate model from
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the correct climate state is less important than the capability of the model
to accurately reproduce climate variability patterns on the decadal to
multidecadal time scale; climate projections are considered a boundary
value problem (e.g. Boer et al., 2016). Unlike weather forecasts, climate pro-
jections are not expected to resolve small spatial scales: the expectation
towards a climate projection is to accurately capture trends or changes
in climate variability on spatial scales of several hundred kilometers, or
even globally. It is therefore paramount for a climate projection model to
accurately reproduce trends and variability in the underlying physics on
(multi-)decadal time scales to produce a skillful climate projection.

Decadal climate predictions combine the expectations towards
weather forecasts and climate projections: they are expected to capture
long-term trends and variability changes in the climate system while
producing predictions that can be used by decision makers. These deci-
sion makers mostly need information on relatively small spatial scales to
use. Studies showed that both the initial conditions and low-frequency
variability in the climate system should be accurately represented in
a climate model to produce skillful decadal climate predictions (e.g.
Palmer et al., 2004; Matei et al., 2012; Doblas-Reyes et al., 2013). Climate
predictions on the decadal timescale can therefore be considered both an
initial value problem and a boundary value problem (fig. 1.1).

So-called assimilation experiments combine the good representation
of initial conditions from weather forecasting with the good representa-
tion of boundary forcing in climate models (e.g. Keenlyside et al., 2008).
Assimilation experiments use a global climate projection model, or gen-
eral circulation model (GCM), and use (assimilate) observations to constrain
the GCM to observed past climate states and variability. Usually, because
of the availability of observations, assimilation experiments cover the
time between 1960 and today. For this time horizon, studies showed skill-
ful decadal climate predictions in many regions around the globe (e.g.
Smith et al., 2007; Doblas-Reyes et al., 2013). The North Atlantic region
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has been subject to particularly high attention (e.g. Smith et al., 2007; Yea-
ger et al., 2012; Müller et al., 2012; Monerie et al., 2017).

The highest skill in decadal climate hindcasts was found for tem-
peratures over the oceans, whose inertia forms a memory in the climate
system that preconditions decadal climate predictability (e.g. Branstator
and Teng, 2010; Matei et al., 2012; Collow et al., 2015). For other climate
variables, e.g. precipitation, the skill of decadal hindcasts was found to
be modulated by the ocean as well (e.g. Gaetani and Mohino, 2013).
Specifically, decadal temperature skill can be expected to be high in
areas that are strongly influenced by low-frequency ocean variability,
like ocean overturning dynamics (e.g. Yeager et al., 2012; Robson et al.,
2013). This indicates that mechanisms of low-frequency variability in
the ocean precondition skill of decadal climate hindcasts. Understanding
why decadal climate predictions are successful therefore requires under-
standing decadal climate variability.

Sea surface temperature (SST) variability reflects a balance between
the low-frequency variability of upper ocean heat content and the
higher-frequency variability of ocean atmosphere surface heat fluxes.
This was first described for the North Atlantic by Bjerknes (1964), who
interpreted SSTs as a coupled ocean-atmosphere mode with a driving
role for the ocean and a dampening role for the atmosphere on decadal
time scales. Later, simulations using computational models supported
Bjerknes’ hypothesis by showing that on decadal time scales and longer,
SST fluctuations in the North Atlantic are driven by ocean overturning
variability (e.g. Eden and Willebrand, 2001; Gulev et al., 2013). Specifi-
cally, studies underscored that, in the North Atlantic, the variability of
the ocean mass transport, the Atlantic Meridional Overturning Circu-
lation (AMOC), and associated oceanic heat transport (OHT) strongly

Ocean Overturning and North Atlantic Temperatures1.2
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shapes decadal surface temperature variability (e.g. Timmermann et al.,
1998).

A robust climatic feature that was found consistently is the lagged
relationship between North Atlantic deep water formation, AMOC/
OHT, and SSTs in that order (Yeager and Robson, 2017). The formation
of deep water in the North Atlantic, particularly in the Labrador Sea
region, was shown to be connected to persistent forcing from the Atmos-
phere, specifically the North Atlantic Oscillation (NAO, e.g. Marshall et
al., 2001).This deep water formation is one of the drivers of AMOC vari-
ability in the North Atlantic. The AMOC and OHT are therefore impor-
tant features of the climate system that connect atmospheric variability
to the variability of SSTs in the North Atlantic on the decadal time scale
(e.g. Zhang, 2008).

The ocean contribution to SST variability is often approximated by
integrating temperatures from the surface to some characteristical depth
(e.g. Yeager et al., 2012). The characteristical depth depends on the region
of interest; in the North Atlantic, some previous studies have used 700m
as lower bound (e.g. Zhang and Zhang, 2015). The integrated tempera-
tures in this water volume are called upper ocean heat content (UOHC).

Changes in UOHC in the North Atlantic are controlled by conver-
gence of heat in the ocean and vertical heat fluxes (surface heat fluxes,
SHFs) at the ocean-atmosphere interface. The low-frequency changes of
UOHC were linked to SST variability on the multi-decadal time scale
under the term Atlantic Multidecadal Oscillation or, more recently because
of its lack of clear periodicity, Atlantic Multidecadal Variability (AMV, e.g.
Kerr, 2000; Ting et al., 2011; Peings et al., 2016). The connection of UOHC
variability to the AMV indicates that SST variability on the decadal time
scale and longer is in parts of the North Atlantic dominated by low-fre-
quency ocean dynamics (e.g. Eden and Willebrand, 2001; Zhang et al.,
2016). The idea of an ocean dominated AMV was contested recently by
studies suggesting that the AMV is mainly the result of stochastic atmos-
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pheric forcing (Clement et al., 2015; Bellomo et al., 2016; Cane et al.,
2017). However, several papers attributing SST variability in the North
Atlantic to changes in ocean overturning and explaining a physical mech-
anism seem to support the hypothesis that the ocean dominates AMV
variability (e.g. Zhang, 2008; Zhang and Zhang, 2015). Zhang (2008)
and Zhang and Zhang (2015) described a mechanism connecting strong
phases of AMOC-related OHT to ocean heat convergence and conse-
quently UOHC variability in the North Atlantic (fig. 1.2). Strong phases
of the AMOC and associated OHT in the northern North Atlantic were
shown to originate from surface density anomalies in the subpolar North
Atlantic and to propagate southward at a slow advection speed. The
authors showed that this slow southward propagation of strong OHT
phases led to a heat convergence anomaly North of the OHT anomaly
and a heat divergence anomaly South of the OHT anomaly, constituting
an UOHC anomaly dipole between positive anomalies in the North
Atlantic Subpolar Gyre and negative anomalies in the Gulf Stream
region, the so-called AMOC Fingerprint (Zhang and Zhang, 2015, figs.
1.2a,b). Because of the slow propagation of OHT phases, the time lag
between the initial AMOC and OHT anomaly at 50°N and the AMOC
Fingerprint was found to be between 2 and 12 years, depending on the
model setup (fig. 1.2c; Zhang and Zhang, 2015). The meridional coher-
ence of AMOC anomalies is a necessary prerequisite for studying the
propagation of AMOC anomalies across latitudes. Zhang (2010) showed
that AMOC anomalies were particularly meridionally coherent when
calculated in density coordinates.

DECADAL PREDICTIONS OF THE CLIMATE SYSTEM

6



Figure 1.2

An illustration of the physical mechanism connecting AMOC variability
in the subpolar North Atlantic to SST variability proposed by Zhang
(2008) and Zhang and Zhang (2015). (a) shows the regression of tempera-
ture anomalies in the North Atlantic on AMOC in the GFDL-CM2.1
(Zhang, 2008). In (b), this temperature pattern is conceptualized by Zhang
(2008). (c) shows a conceptual depiction of the AMOC-SST mechanism
presented in Zhang and Zhang (2015), illustrating the southward propa-
gation of positive AMOC anomalies (here: MHT = Meridional Heat Trans-
port) over time and associated heat convergences and divergences.

The AMOC Fingerprint was connected to the AMV and thus
hypothesized to influence the skill of decadal UOHC and SST hindcasts
(Zhang, 2008; Zhang and Zhang, 2015). In this dissertation I use the Max-
Planck-Institute Earth System Model (MPI-ESM) to examine this hypoth-
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esis. However, the mechanism connecting ocean circulation changes to
SST variability on decadal time scales suggested by Zhang and Zhang
(2015) was shown in only one climate model, the GFDL Climate Model 1.2,
so far. For an application to a hindcast study in the MPI-ESM, this mech-
anism therefore has to be understood in the MPI-ESM prior to analyzing
hindcasts. I thus derive the following first central research question:

I will in this chapter establish a mechanism in the MPI-ESM connecting
AMOC and OHT to SST variability on the decadal time scale. Going fur-
ther, I will examine the effect of this mechanism on surface air tempera-
tures (SATs). I will then proceed to examine how this mechanism affects
temperature predictability on the same time scale.

⇒ Can the mechanism leading to the AMOC Fingerprint pro-
posed by Zhang and Zhang (2015) be found in the MPI-ESM-LR, and
how is this mechanism characterized?
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Figure 1.3

A typical map of surface temperature hindcast skill 2-5 years into the
future, evaluated as anomaly correlation coefficients (from Müller et al.,
2014). The North Atlantic region shows high skill.

Climate prediction several years into the future has received
increasing scientific attention recently (e.g. Palmer et al., 2004; Smith et
al., 2007; Keenlyside et al., 2008; Doblas-Reyes et al., 2013; Müller et al.,
2014). Good hindcast skill was found in the North Atlantic region and
in surface temperatures over Europe on time scales of 2-8 years (fig. 1.3,
e.g. Smith et al., 2007; Yeager et al., 2012; Müller et al., 2012). While hind-
cast skill for surface temperatures was found to have a tendency to be

Decadal Hindcasts in the North Atlantic Region1.3

DECADAL PREDICTIONS OF THE CLIMATE SYSTEM

9



weaker over continental regions, it was found to be mostly high over
the ocean. This stems from the inertia of the ocean, a memory in the cli-
mate system, which preconditions decadal temperature predictability in
the North Atlantic region (e.g. Branstator and Teng, 2010; Matei et al.,
2012; Collow et al., 2015). Recent studies suggested that phases of strong
OHT in the subpolar Atlantic Ocean linked to AMOC variability influ-
ence North Atlantic UOHC (defined as the heat contained in the top
700m of the ocean, e.g. in Zhang and Zhang, 2015), which might improve
surface temperature predictability on a time scale of 2 to 12 years (Zhang,
2008; Zhang and Zhang, 2015). However, the specific advantage of know-
ing the OHT-strength at the start of a prediction on the quality of the pre-
dictability estimate of North Atlantic UOHC and surface temperatures
was not shown so far. Here, I analyze the dependency of the decadal pre-
dictability of North Atlantic UOHC, SSTs, and SATs on the state of the
OHT at 50°N at the start of the prediction.

Decadal SST and SAT hindcasts were demonstrated to be particu-
larly skillful in the North Atlantic in several recent studies (e.g. Matei
et al., 2012; Yeager et al., 2012; Klöwer et al., 2014; Müller et al., 2014;
Robson et al., 2017; Yeager and Robson, 2017). Since surface temperature
hindcast skill is often found to be stronger over the ocean than over land,
it is commonly assumed that the source of decadal temperature predic-
tion skill in the North Atlantic resides in the ocean (Yeager and Robson,
2017). Specifically, high decadal surface temperature hindcast skill was
found in regions where ocean dynamics influence surface temperature
variability more strongly than atmospheric dynamics in many studies
(e.g. Yeager and Robson, 2017). There are two current hypotheses con-
cerning the origin of the oceanic memory that preconditions hindcast
skill in the North Atlantic region: that decadal surface temperature hind-
cast skill originates from the persistence of heat content in the ocean (e.g.
Meehl et al., 2009), and that skill originates from low-frequency ocean
circulation (e.g. Robson et al., 2013, 2014).
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Case studies showed that low-frequency variability of the oceanic
circulation can precondition hindcast skill of UOHC and SSTs on the
decadal time scale. Specifically, the 1960s cooling of the North Atlantic
Subpolar Gyre (Robson et al., 2014), and the 1920s (Müller et al., 2014)
and 1990s (Yeager et al., 2012; Robson et al., 2013) warmings were shown
to be predictable several years in advance when the state of the ocean
was initialized in the respective model simulation. These studies showed
that individual events of strongly anomalous UOHC in the North
Atlantic could have been predicted in the past. Found predictability
might even be connected to decadal predictability for SATs over parts of
Europe as well (Robson et al., 2012). While the connection of subpolar
AMOC and OHT variability on UOHC predictability was shown in these
case studies, there was no systematic evaluation yet. The physical mech-
anism connecting OHT to UOHC variability in the North Atlantic region
suggested by Zhang and Zhang (2015) provides a framework to test the
influence of OHT dynamics on UOHC predictability more generally.

In this dissertation, I go beyond previous studies and systemat-
ically identify the specific influence of variability of subpolar AMOC
and OHT on decadal hindcast skill of surface temperatures in the North
Atlantic. Based on the findings from chapter 3, I assess hindcast skill in
the 20thcentury for strong and weak subpolar OHT phases separately. I
then compare the influences of OHT variability and UOHC persistence
on decadal surface temperature hindcast skill. To reconcile the hypothe-
sis brought up in previous studies that ocean overtuning dynamics dom-
inate decadal surface temperature predictability, I ask:

Following the findings from chapters 3 and 4, I will show some of their
implications for the evaluation of decadal hindcast skill. Specifically, I
will first place these findings in the context of other model simulations

⇒ How strongly do ocean overturning dynamics influence the
skill of SST hindcasts in the North Atlantic region?
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with the same climate model and in the context of observations to see
how representative they are of different modes of climate variability. I
will then discuss how representative skill estimates found for any period
of the past can be for actual forecasts.

In assimilation model experiments, observational data is used to
constrain the variability the model produces on its own to stay within
the bounds of observed variability (e.g. Palmer et al., 2004). The hope of
applying this technique in the context of decadal hindcast studies is to
generate a four-dimensional climate state estimate that is similar to the
observed climate (e.g. Keenlyside et al., 2008). This state estimate is then
used to start hindcast runs with the free model from a relatively realistic
climate state to produce skillful hindcasts (e.g. Yeager et al., 2012; Robson
et al., 2013). In the past, this approach has proved to be very effective in
improving decadal hindcast skill. However, there is an issue connected to
the assimilation of observations into climate models: it is from the assim-
ilation model itself unclear how representative dynamical features found
within it are with respect to observations and the underlying model. In
this dissertation, I present an approach to place findings from the first
two chapters in the context of observations and the MPI-ESM-LR.

Numerous studies reported differences between assimilation
experiments, non-initialized model simulations, and observations (e.g.
Balsameda and Anderson, 2009; Pohlmann et al., 2017). The relative con-
tribution of model and observed climate variability to climate variabil-
ity in assimilation experiments varies in space and time (Servonnat et
al., 2015). It is therefore inherently unclear how the dynamics found in
assimilation model experiments need to be interpreted: as observed vari-
ability, as model variability, or as something else.

Understanding North Atlantic Climate Variability in
the MPI-ESM-LR

1.4
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In the latter case - the interpretation of assimilation model simula-
tions as their own domain of model simulation with its very own mode
of climate variability - findings concerning climate variability and pre-
dictability obtained from these model simulations need an extra step of
analysis to be fully understood. Because while it is relatively clear what
climate variability found in model studies or observational studies rep-
resents (model variability and observed climate variability, respectively),
the respective roles of observed and modeled climate variability in pro-
ducing climate variability in an assimilation run are unclear for the afore-
mentioned reasons.

I will in chapter 5 examine findings from chapters 3 and 4 in more
detail, placing them in the broader climatic context of model-based and
observed climate variability. I will put particular focus on North Atlantic
OHT and SST variability. Specifically, I will answer the following ques-
tion:

After placing the findings concerning decadal temperature variability
and hindcast skill in the North Atlantic in the context of overall climate
variability, I move on to show how hindcast skill can be expected to
change over time. This will not only help to understand climate hindcasts
of the past, but also suggest how to translate hindcast skill found for the
past into the credibility of forecasts.

In this dissertation I shed light on the time-dependence, or non-
stationarity, of decadal climate hindcasts. I also suggest an approach to

⇒ Is the previously discussed climate variability reasonable with
respect to both model variability produced by the MPI-ESM-LR and
observations?

Non-Stationary North Atlantic Surface Temperature
Prediction Skill

1.5
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accurately estimate the credibility of individual forecasts using hindcast
simulations.

Decadal climate hindcasts are conventionally evaluated over a cer-
tain period in the past. The mean skill found for these hindcasts is then
assumed to reflect the credibility of an individual forecast. However,
several studies showed recently that hindcast skill estimates can differ
substantially depending on the period that the hindcasts are evaluated
for. This was shown for seasonal hindcasts of the winter North Atlantic
Oscillation (Weisheimer et al., 2017; O’Reilly et al., 2017) and for decadal
hindcasts of the North Atlantic Subpolar Gyre region (Brune et al., 2017).
The skill estimates derived for the past by conventional hindcast studies
are therefore not representative for the whole period they cover. Hind-
cast skill estimates are thus likely not directly applicable for individual
forecasts.

To examine the applicability of current measures of decadal hind-
cast skill for the estimation of the credibility of any individual forecast, I
ask:

This chapter will provide some exciting insights into where decadal cli-
mate prediction research might, or should, develop in the future. It will
also draw on the findings from chapters 3 and 4 and highlight their
implications.

In this dissertation, I examine the influence of low-frequency ocean
variability on the predictability of surface temperatures, studying the
North Atlantic region. Chapter 2 presents the methods I will use in this
dissertation. In chapter 3, I use an initialized version of the MPI-ESM to
examine a physical mechanism suggested by Zhang and Zhang (2015)

⇒ Are mean hindcast skill estimates appropriate to estimate the
credibility of a single temperature forecast in the North Atlantic
region?
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that connects variability of the heat transported by the AMOC into the
subpolar North Atlantic to North Atlantic SST variability on the decadal
time scale. I discuss the influence of this mechanism on decadal surface
temperature predictability in chapter 4. A paper that was published in
the Journal of Climate summarizes findings presented in chapters 3 and
4.

In chapter 5, I elaborate on the findings from chapter 3 and inves-
tigate which mode of climate variability (model-based or observed) is
found in the assimilation experiment. This will help to place the findings
from chapters 3 and 4 in the wider climatic context. In chapter 6, I exam-
ine how representative hindcast skill estimates for the past can be con-
sidered for individual decadal climate forecasts. This will allow me to
integrate my findings into the scientific context and discuss implications
of these findings for future decadal climate hindcast and predictability
studies in the concluding chapter. Findings presented in chapter 6 are the
subject of a paper that is currently in preparation for submission.

To answer the questions I bring forward in this dissertation, I use
the fully coupled Max Planck Institute Earth System Model (MPI-ESM).
Specifically, I use the low-resolution (LR) model version that was used in
the 5th phase of the Coupled Model Intercomparison Project. This model
version uses the ocean model MPIOM (Jungclaus et al., 2013) at a nom-
inal horizontal resolution of 1.5° and 40 vertical levels which is interac-
tively coupled to the atmospheric model ECHAM6 (Stevens et al., 2013)
of the horizontal resolution T63 with 47 vertical levels with the top at
0.1 hPa. The model used here has a curvilinear grid with three poles,
one over Greenland, one over Sibiria, and one over Antarctica. Therefore,
the actual model resolution in the North Atlantic region is considerably
higher than the average resolution, which improves the representation of
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climate variability in the North Atlantic region. I use several configura-
tions of the MPI-ESM-LR that I will outline in the following.

To understand how ocean overturning influences surface tempera-
tures in the MPI-ESM-LR, I use a pre-industrial control (piControl) sim-
ulation of 1000 years, and a historical simulation for 1896-2005 (HIST).
Atmospheric greenhouse gas emissions are kept constant at the pre-
industrial level in piControl. Therefore, the 1000 years of the piControl
simulation represent an estimate of the internal variability created by the
MPI-ESM-LR. In HIST, atmospheric greenhouse gas concentrations fol-
low the observed trend for that time period. HIST can therefore be used
to examine the reaction of the MPI-ESM-LR to greenhouse gas warming
until the end of the 20th century. I subtract the linear trend from piCon-
trol and HIST before performing any analysis.

In addition to the piControl and HIST model simulations, I use
two greenhouse gas emission scenario projections with the MPI-ESM-
LR to assess the change of physical mechanisms identified in this thesis
with global warming. Specifically, I consider the time period 2191-2300
in the two warming scenarios RCP4.5 and RCP8.5. These correspond to
a moderate warming scenario (RCP4.5) and a business-as-usual scenario
of strong warming (RCP8.5). To assess climate variability in the 22nd cen-
tury beyond the Region global warming trend within that century, I sub-
tract the linear trend from the 110-yearlong time series of RCP4.5 and
RCP8.5.

In this dissertation, I use the decadal prediction system from

piControl, HIST and RCP2.1

The MPI-ESM-LR Decadal Prediction System2.2
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Müller et al. (2014) with the fully coupled MPI-ESM-LR to explore
decadal climate variability and predictability in the North Atlantic. The
setup consists of an assimilation experiment covering the period
1901-2010, and ten-year-long hindcast runs with the fully coupled MPI-
ESM-LR, which are started (initialized) from the assimilation experiment
at the beginning of every year, and are after that only subject to observed
greenhouse gas forcing.

The assimilation experiment consists of three ensemble members
that are constructed by forcing the MPIOM at the surface with fluxes of
momentum, energy, and freshwater (Müller et al., 2015). These fluxes are
obtained for the period 1872-2010 from three different randomly selected
realizations of the 20th century reanalysis (Compo et al., 2011). Four-
dimensional salinity and temperature fields from the resulting ocean
states are then nudged into the fully coupled MPI-ESM-LR for the period
1901-2010 (Müller et al., 2014). I use the ensemble mean of the three
resulting climate states as an estimate of climate variability in the 20th

century.

I remove the mean seasonal cycle from each ensemble member of
the assimilation experiment separately to ensure that my analyses are
not dominated by the signal of a seasonal cycle. I then form an ensem-
ble mean of the three realizations of the assimilation run. I detrend the
ensemble mean and form anomalies against its mean state. Detrending
ensures that the variability and predictions that I examine in this disser-
tation refer to the internal variability of the climate system, and are not
contaminated by the long-term trend. The detrended ensemble mean of
anomalies will henceforth be referred to as ASSIM.

From every individual ensemble member, Müller et al. (2014)
started ten year long simulations with the free fully coupled MPI-ESM-
LR at the beginning of every year. I evaluate the ensemble mean of these
hindcasts against the assimilation experiment to reconstruct the skill of
decadal predictions for the 20th century.
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I remove the mean seasonal cycle from every ensemble member
of the hindcasts individually. The ensemble members of the hindcast
experiments are bias corrected against the corresponding realization of
the MPIOM simulation from Müller et al. (2015), by setting the mean
climate state in the hindcast experiments to that of the corresponding
MPIOM simulation. Then, I construct an ensemble mean from the hind-
cast ensemble members. I detrend the ensemble mean hindcasts, and
form anomalies against the mean state of the ensemble mean. The result-
ing detrended and bias corrected ensemble mean hindcasts will be
referred to as HC throughout this dissertation.

Starting coupled model simulations from assimilation experiments
can lead to a strong drift where model physics and real physics disagree
(e.g. Smith et al., 2013; Sanchez-Gomez et al., 2016; Pohlmann et al.,
2017). Because the ocean state estimate used here for assimilation was
based on the same model version as the ocean component of the coupled
model it was assimilated into, and because it was forced exclusively at
the ocean surface, data assimilation in this simulation represents a rel-
atively soft approach to data assimilation. This potentially reduces the
amount of drift that can be expected from this assimilation model simu-
lation. Moreover, the interior ocean can freely adjust to the surface forc-
ing. This enables an examination of the temporal and spatial develop-
ment of surface-induced changes in the ocean state and dynamics, like
the mechanism leading to the AMOC Fingerprint (Zhang and Zhang,
2015), with minimal perturbance from data assimilation. On the other
hand, a surface-forced ocean state estimate might represent the three-
dimensional ocean state only to a limited degree. However, the ocean
state estimate that was used to produce ASSIM was previously found to
produce reasonable climate variability in the North Atlantic region that
is in agreement with observations and reanalyses in the atmosphere as
well as the ocean for the entire 20th century, like the 1960 cooling and the
1920 and 1990 warmings (Müller et al., 2015). A drawback of the HC sim-
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ulations is the limited ensemble size of three members. Regardless, the
HC ensemble mean was shown to reproduce climate variability in the
North Atlantic region robustly for the entire time series 1901-2010, which
led to an increase in North Atlantic surface temperature prediction skill
when using 1901-2010 for the evaluation of skill compared to 1960-2010
(Müller et al., 2014). Because of the aforementioned reasons, ASSIM and
HC are appropriate tools for the examination of the research questions
brought forward in this dissertation.

Wherever possible, I place my findings in the context of tempera-
ture observations. I use in this dissertation the Hadley Center Sea Ice and
Sea Surface Temperature data set (HadISST) from Rayner et al. (2003).
This SST state-estimate is an ocean reanalysis based on SST and sea ice
concentration data that is interpolated onto a grid using a reduced scale
optimal interpolation procedure (Rayner et al., 2003). HadISST provides
an SST and sea ice reanalysis for the period 1870 to 2018 (as of April 2018)
that is widely used to verify model simulations and hindcasts (e.g. Brune
et al., 2017). In this dissertation I use the period 1901-2010 of HadISST
data. To assess internal climate variability beyond linear warming, I sub-
tract the linear trend for 1901-2010 from HadISST.

In this dissertation, I use AMOC anomalies in density coordinates,
calculated from vertical diapycnal transports that are calculated from
divergences of horizontal transports. I define total OHT in time (Q(t))
as the depth- and longitude- integrated product of three-dimensional y-
velocity (v) and potential temperature (Θ) fields as in Jayne and Marotzke
(2001). This is formulated as

Observations2.3

Post-Processing and Methods2.4
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Q(t) = ρ0cp∫∫ − H
0 vΘdzdx

with ρ0: density of sea water (1025 kg ⋅ m − 3), and cp: specific heat of sea

water (3994 J ⋅ kg − 1 ⋅∘ C − 1) integrated over depth z, up to maximum
depth level H, and longitudinal extent of the Atlantic basin x (Jayne and
Marotzke, 2001).

Upper ocean heat content (UOHC(t)) at every horizontal grid point
is calculated by integrating potential temperature Θ in the upper 700 m
of the ocean (the upper 20 layers in the MPI-ESM-LR):

UOHC(t) = ρ0cp∫700m
0m Θdz.

In this dissertation, I examine the heat exchange between the ocean and
the atmosphere using surface heat fluxes (SHF). These are here defined
as the total surface heat fluxes over sea. This includes shortwave, long-
wave, sensible and latent heat fluxes. These fluxes are defined positive
downward.

Climate co-variability is assessed using Pearson correlation coeffi-
cients. These correlation analyses sometimes involve lagging one time
series with respect to the other to find temporal shifts between variability
patterns. The statistical significance of these correlations is assessed
using a Monte-Carlo procedure. This procedure shows the likelyhood
that the correlation values occur by chance. The amount of total climate
variability explained by certain features of the climate system is analyzed
using an Empirical Orthogonal functions (EOF) analysis (Storch and
Zwiers, 1999). Wherever I compare different physical modes of the cli-
mate system, like strong and weak phases of ocean heat transport, I
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use a composite mean analysis, i.e. I compare the mean states of the
different physical modes. These composite means are lagged against
each other where appropriate. To test whether composite mean climate
states related to different climate modes are statistically different from
the mean climate variability, I use a two-sided t-test.

I assess the hindcast skill of HC using Anomaly Correlation Coeffi-
cients (ACCs). ACCs are formulated as

ACC =
∑i = 1

n
fi

′ ai
′

√∑i = 1

n
fi

′ 2∑i = 1

n
ai

′ 2
,

with n: number of samples, f ′ : anomaly of the forecast value, and a ′ :
anomaly of the verifying value (Jolliffe and Stephenson, 2012). ACCs thus
provide an estimate of the co-variability of HC and ASSIM for a given
period of time in the past. The statistical significance of the skill estimates
of the hindcasts presented in this dissertation is assessed using a Monte-
Carlo procedure. This procedure shows the likelyhood that HC produces
‘observed’ climate variability by chance. The predictability I discuss here
is tested using a leave-one-out cross-validation (Arlot and Celisse, 2010)
to ensure that hindcast skill that I diagnose is not dominated by individ-
ual years.

I form annual mean anomalies of OHT, AMOC, UOHC and SSTs.
From SATs, Iconstruct annual and seasonal mean anomalies for winter
(January, February, March; JFM), spring (April, May, June; AMJ), summer
(July, August, September; JAS), and autumn (October, November, Decem-
ber; OND) from HC and ASSIM. The definition of these seasons is chosen
to avoid averaging over model initialization in HC. I use full values of
both annual and seasonal mean SHFs, not anomalies, to understand the
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full energy exchange between the ocean and the atmosphere. Analyses
in piControl, HIST, the RCP scenarios, and HadISST only use annual
means.

The objective of this chapter is to identify the specific influence of
strong and weak phases of the AMOC and associated ocean heat trans-
port on SSTs in the North Atlantic up to a decade into the future. Zhang
and Zhang (2015) used simulations with the GFDL-CM2.1 model to pre-
sent a physical mechanism that connects ocean overturning variability
in the subpolar North Atlantic with a particular SST pattern, the AMOC
Fingerprint, about a decade later. The AMOC Fingerprint features a SST
dipole of a positive SST anomaly in the North Atlantic subpolar gyre and
a negative SST anomaly in the Gulf Stream region.

In their study, Zhang and Zhang (2015) showed that the evolution
of the AMOC Fingerprint depends on a slowly southward propagating
AMOC and OHT anomaly that originates from a surface density anom-
aly in the North Atlantic. While propagating southward slowly, this
AMOC and OHT anomaly constantly transports heat northward, leading
to a heat convergence anomaly North of the AMOC and OHT anomaly
and a heat divergence anomaly South of it (cf. fig. 1.2c; Zhang and
Zhang, 2015). At 35°N, the AMOC and OHT anomaly breaks down and
continues to travel southward at the speed of a coastal Kelvin wave,
which inhibits the formation of the AMOC Fingerprint South of that lat-
itude.

Ocean Overturning and North Atlantic
Temperatures

3

Introduction3.1
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The evolution of the AMOC Fingerprint has so far only been exam-
ined in the GFDL model. I therefore use in this chapter the ASSIM sim-
ulation to examine the robustness of the evolution of the AMOC Fin-
gerprint in the MPI-ESM-LR. In the process, I identify possible model-
specific aspects in the formation of the AMOC Fingerprint. I begin by
replicating the study by Zhang and Zhang (2015) in the ASSIM simu-
lation. Subsequently, I address some questions that the study by Zhang
and Zhang (2015) left open: I investigate in composite mean upper ocean
heat content and SST anomalies to determine whether there is a differ-
ence in the influences of strong and weak phases of AMOC and OHT on
the formation of the AMOC Fingerprint. I then examine the influence of
the AMOC Fingerprint on surface air temperatures.
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Figure 3.1

(a) Detrended anomalies of AMOC maximum at 50°N (dashed line, [Sv])
and total OHT at 50°N (solid line, [10−1 PW]) in the ASSIM-simulation.
The grey area denotes a half standard deviation above and below the
mean of the previous 30 years. Strong and weak OHT phases, i.e. years
where the solid line lies outside the grey area, are marked with red and
blue dots at the bottom, respectively. Hovmöller Diagrams of OHT anom-
alies (b) and AMOC maximum anomalies (c) illustrate the development
of strong and weak anomalies of OHT and AMOC in space (y-axis, [°lati-
tiude]) and time (x-axis [yrs]). OHT and AMOC time series are detrended
at each latitude.

The key feature of the findings by Zhang and Zhang (2015) is the
slow southward propagation of OHT phases in the North Atlantic. I

Meridional Coherence of AMOC and OHT in the
North Atlantic

3.2
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therefore first analyze the meridional coherence of AMOC maximum
and total OHT in the assimilation model experiment ASSIM, and test
whether AMOC variability and heat transport variability are linked in
this model. Annual mean anomalies of AMOC maximum and OHT are
largely coherent at 50°N (corr = 0.84, fig. 3.1a), and seem closely con-
nected across the entire North Atlantic at both decadal and longer time
scales (fig. 3.1b,c). In ASSIM, the 20th century is characterized by substan-
tial multidecadal variability in both AMOC and OHT with stable strong
anomalies in the 1920s and 1990s and an episode of less stable weak
anomalies in between. This variability is similar to previously published
estimates (e.g. Robson et al., 2013, 2014; Müller et al., 2014).
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Figure 3.2

ASSIM-based lead-lag correlations of OHT at 50°N with AMOC maxi-
mum anomalies (a), OHT anomalies (b), and ocean heat convergence (c).
Lead-lag correlations of OHT at 45, 50, and 55°N with oceanic heat con-
vergence between 40-50°N, 45-55°N, and 50-60°N, respectively, are shown
in (d). Positive lags indicate that OHT leads and vice versa.

As suggested by Zhang and Zhang (2015), OHT anomalies in
ASSIM generally originate in the North Atlantic between 50-60°N and
propagate southward slowly; this propagation is closely linked to AMOC
dynamics (fig. 3.2a,b). South of 35°N, both AMOC and OHT anomalies
show only limited correlation to OHT anomalies at 50°N, and the correla-
tion that can be seen shows the same lag to OHT at 50°N. The latter indi-
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cates that South of 35°N, AMOC and OHT anomalies propagate south-
ward at the speed ofa coastal Kelvin wave as described in Zhang and
Zhang (2015).

Figure 3.3

Point-by-point correlation of OHT50N with upper ocean heat content of
the upper 700m in the North Atlantic in ASSIM at lag 0 (a) and when
OHT50N leads by 3-5 years (b) and 7-9 years (c), and with SSTs at lag 0 (d)
and when OHT50N leads by 3-5 years (e) and 7-9 years (f). Stippling indi-
cates significant correlations at the 99% level.

OHT anomalies at 50°N (henceforth OHT50N) and ocean heat con-
vergence anomalies between 55-40°N several years later are highly cor-
related (fig. 3.2c). This effect results from the slow southward propaga-
tion of the OHT anomaly North of 35°N, and is in line with the findings
of Zhang and Zhang (2015). Because the OHT anomaly propagates more

OCEAN OVERTURNING AND NORTH ATLANTIC TEMPERATURES

27



slowly southward than it advects heat northward, an ocean heat con-
vergence anomaly arises just North of the OHT anomaly, and an ocean
divergence anomaly arises just South of the OHT anomaly. The heat con-
vergence signal is particularly strong and long-lasting between 45-55°N,
where I find a high positive correlation when OHT50N leads ocean heat
convergence by 0 to 8 years (fig. 3.2c,d). The time lags of maximum corre-
lation between OHT50N and ocean heat convergence anomalies decrease
with increasing latitude of the area affected by ocean heat convergence
(fig. 3.2d). Because of the faster propagation of the OHT anomalies South
of 35°N, I do not find a ocean heat convergence signal South of 40°N
(fig. 3.2c). The strong and long-lasting ocean heat convergence anomalies
North of 40°N accumulate heat and potentially lead to persistent UOHC
(Dong et al., 2007; Zhang and Zhang, 2015).

In ASSIM, I find an area of UOHC in the North Atlantic to be sig-
nificantly correlated with OHT50N variability at lag 0, as well as when
OHT50N leads by 3-5 and 7-9 years (fig. 3.3a-c). The highest correlations
are located in the northeast North Atlantic and form a crescent shape
around a strong negative correlation in the Gulf Stream region. The over-
all connection of UOHC to OHT50N increases with increasing years that
OHT50N leads, but the pattern stays the same. SST anomalies (fig. 3.3d-
f) show largely the same shape of correlation to OHT50N anomalies as
UOHC anomalies at all time lags (fig. 3.3a-c). Like with UOHC, the con-
nection of SSTs to OHT50N increases with increasing years that OHT50N
leads. Most of this connection is found North of 40°N.
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Figure 3.4

Point-by-point correlation of OHT50N with sea surface height in the North
Atlantic in ASSIM at lag 0 (a) and when OHT50N leads by 3-5 years (b)
and 7-9 years (c), and with sea surface salinity at lag 0 (d) and when
OHT50N leads by 3-5 years (e) and 7-9 years (f). Stippling indicates signifi-
cant correlations at the 99% level.

Correlation patterns of sea surface height (SSH) anomalies to
OHT50N (fig. 3.4a-c) are very similar to those of UOHC. SSH anomalies
primarily originate from changes in the ocean and are barely affected by
atmospheric processes. Thus, UOHC anomalies can be assumed to show
the oceanic contribution to temperature changes in the surface ocean in
regions where they coincide with SSH anomalies. This is a connection
that was also shown by Zhang and Zhang (2015).

At the ocean surface, the influence of OHT50N variability on sea
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surface salinity is closely connected to the OHT-influence on SSTs as
shown by correlation maps in figure 3.4d-f. This supports that SSTs are a
surface signal that arises from a combination of oceanic and atmospheric
forcing. In conjunction with the similar time lags I find in this analysis
and in the ocean heat convergence correlation (cf. fig. 3.2c,d), I conclude
that the mechanism described by Zhang and Zhang (2015) as leading to
the AMOC Fingerprint is responsible for the OHT-UOHC/SST correla-
tion pattern.

The correlation patterns found for UOHC and SSTs correspond
well with the first principal component of their respective empirical
orthogonal functions (EOFs, fig. 3.5). In addition, the timeseries corre-
sponding to these EOFs are highly correlated with OHT50N when OHT
leads by 8 years (UOHC: 0.76, SST: 0.68). This underlines that OHT50N
variability and the mechanism leading to the AMOC Fingerprint are
responsible for much of the UOHC and SST variability in the extratropi-
cal North Atlantic.

The UOHC and SST pattern I find differs from the pattern Zhang
and Zhang (2015) described. Specifically, I find the strongest positive
anomaly in the northeast Atlantic, while Zhang and Zhang (2015) find
this positive anomaly in the central subpolar gyre (cf. fig 1.2a). Because
of the different UOHC and SST pattern in the MPI-ESM, I will henceforth
refrain from calling this pattern the AMOC Fingerprint to avoid confu-
sion, but will instead refer to the MPI-ESM-specific AMOC Fingerprint
as the characteristic SST pattern.
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Figure 3.5

The first three Empirical Orthogonal Functions (EOFs; arbitrary units) of
UOHC (a-c) and SSTs (g-i) in the North Atlantic between 20 and 80°N in
ASSIM. Corresponding normalized time series are shown as thick solid
lines in (d-f, in PW) and (j-l, in K), respectively. In the time series graphs,
the dashed line shows OHT variability at 50°N [10−1PW].

Going beyond Zhang and Zhang (2015), I examine the emergence
of the characteristic SST pattern and the role of UOHC in more detail
with particular attention to strong and weak phases of OHT50N. Com-

Subsampling Overturning States by Strong and Weak
Ocean Heat Transport

3.3
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posite mean OHT anomalies in the North Atlantic before, during, and
after strong, weak, and neutral anomalies of OHT50N in ASSIM reveal
the respective influences of these OHT phases on SST anomalies sepa-
rately. For that, overturning states are subsampled for years in which the
OHT50N is at least half a standard deviation above or below its mean of
the preceding 30 years (fig. 3.1a). I define years that are not identified as
strong or weak OHT phases as neutral to understand climate variability
that is not connected to particularly strong OHT anomalies for compar-
ison. No conclusions presented in this dissertation change substantially,
though, if other possible criteria are used to select strong, weak, and neu-
tral phases of OHT50N (e.g. a full standard deviation above or below the
mean, or above or below the mean of the previous 30 years).
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Figure 3.6

Composite means before, during, and after strong (left column), weak
(middle column), and neutral (right column) OHT50N phases in ASSIM. I
show mean OHT anomalies (a-c) and cumulative ocean heat convergence
relative to lag 0 (d-f) against latitude. (g-i) show composite mean cumula-
tive heat convergence between 40-50°N, 45-55°N, and 50-60°N for strong
(g), weak (h), and neutral (i) OHT phases at 45, 50, and 55°N, respectively.
Positive lags indicate that OHT leads and vice versa.

Composite mean OHT anomalies associated with strong OHT50N
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phases show a very pronounced and long-lived positive signal that prop-
agates southward between 50 and 35°N. This OHT propagation persists
for up to 9 years after a strong OHT50N anomaly (fig. 3.6a). For weak
OHT50N phases, the negative southward propagating OHT anomaly dis-
appears almost completely 6 years after the OHT50N anomaly (fig. 3.6b).
No distinct OHT propagation signal is connected to neutral OHT50N
phases (fig. 3.6c). This leads to different ocean heat convergence signals
between phases of strong, weak and neutral OHT50N.

Cumulative heat convergence anomalies illustrate the influence of
strong and weak OHT50N on the heat that accumulates in the ocean:
cumulative heat convergence is calculated by integrating ocean heat con-
vergence anomalies at every latitude between the OHT50N anomaly and
time lags between -4 and 10 (fig. 3.6d-f). Strong OHT50N phases are fol-
lowed by a strong and long-lived cumulative heat convergence anom-
aly that extends approximately from 45-55°N after 5 years (fig. 3.6d).
This cumulative heat convergence anomaly is strongest between 45-55°N
compared to other latitudinal bands (fig. 3.6g). Weak OHT50N phases are
followed by a weak cumulative heat divergence anomaly that emerges
at longer lag of 6 or more years and extends from 50°N northward (fig.
3.6e). Here, a positive cumulative heat convergence anomaly South of
50°N and a negative cumulative heat convergence anomaly North of
50°N are stronger than the heat convergence anomaly between 45-55°N
(fig. 3.6h). The cumulative ocean heat convergence signal following neu-
tral phases is largely similar to that following weak OHT50N phases (fig.
3.6f), which does not lead to a distinct ocean heat convergence signal
North of 45°N (fig. 3.6i). The strongest ocean heat convergence signal that
cannot be found after all OHT50N phases is the strong ocean heat con-
vergence anomaly between 45-55°N after strong OHT50N phases. This
indicates that the effect of OHT50N anomalies on the characteristic SST
pattern is only strong between 45-55°N after strong OHT50N phases,
which would indicate an asymmetric response of SSTs to subpolar OHT.
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Other heat convergence signals are symmetric between all different OHT
phases which indicates an influence of OHT variability on surface tem-
peratures in these latitudinal bands. However, no large differences of
temperature signals between different OHT50N phases can be expected
there.

Composite mean upper ocean heat content anomalies during and
after phases of strong and weak OHT50N (fig. 3.7) show a similar shape
as the UOHC correlation maps in figures 3.3a-c (keeping in mind that
positive correlations correspond to positive composite means for strong
OHT phases and negative composite means for weak OHT phases).
Following strong OHT50N phases, a strong positive UOHC anomaly
between 45-55°N appears in the northeast Atlantic and increases in
strength over time (fig. 3.7a-c). By contrast, the UOHC anomaly is only
weakly negative in this area after weak OHT50N phases at all time lags
(fig. 3.7d-f). Neutral phases are, particularly North of 40°N, not obviously
connected to the correlation patterns I previously found (fig. 3.7g-i). This
is in line with the findings based on the composite mean cumulative heat
convergence anomalies (cf. fig. 3.6d-i). The role of the ocean in the forma-
tion of this UOHC anomaly is underpinned by the fact that I find a SSH
anomaly of very similar shape at the same time (fig. 3.8).

Another signal I find in the composite mean UOHC anomalies is a
dipole between the Gulf Stream region and its South-Eastern edge (fig.
3.7). This pattern can also be attributed to composite mean cumulative
ocean heat convergence anomalies (cf. fig. 3.6d-i). However, it appears to
be a symmetric response as this pattern arises after neutral, weak and
strong OHT50N phases at similar strengths. UOHC in that area is there-
fore likely to arise from physical processes that are not connected to
the southward propagation of OHT phases in the North Atlantic region
and associated ocean heat convergence. I also find this response in SSH
anomalies (fig. 3.8).

Composite mean SST anomalies compared to the composite mean
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UOHC anomalies described above show a similar pattern North of 40°N
(fig. 3.9). I find a strong signalin composite mean SST anomalies in
the northeast Atlantic that propagates westward over time after both
strong and weak OHT50N phases. Again, neutral OHT50N phases are
not strongly connected to SST anomalies North of 40°N. After strong
OHT50N phases, composite mean SST anomalies grow continuously
stronger over time (fig. 3.9a-c), whereas composite mean SST anomalies
after weak OHT50N phases become very weak in the northeast Atlantic
after 7-9 years (fig. 3.9f). I therefore conclude that ocean heat convergence
influences SSTs most strongly in the northeast Atlantic several years after
phases of strong OHT50N. Moreover, the asymmetric response of SST
anomalies in the northeast subpolar North Atlantic that originates from
asymmetric OHT dynamics in the North Atlantic is one important find-
ing from this chapter.
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Figure 3.7

Composite mean upper ocean heat content anomalies [PW] in ASSIM,
related to strong (a-c), weak (d-f), and neutral (g-i) OHT50N phases. I
show composites at lag 0 (a,d,g) and composite mean UOHC 3-5 (b,e,h)
and 7-9 (c,f,i) years after strong and weak OHT50N phases. Stippling indi-
cates significance at the 99% level. Contours show significant (at the 99%
level) net ocean-atmosphere surface heat fluxes into the ocean (solid con-
tours) and out of the ocean (dashed contours).
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I now examine the influence of the mechanism leading to the char-
acteristic SST pattern on ocean-atmosphere surface heat fluxes and sub-
sequently surface air temperatures over Europe. This analysis will give
an indication of the effect that changes in subpolar North Atlantic ocean
circulation can have on European temperatures up to a decade in
advance, which might indicate high decadal surface temperature predic-
tion skill over land.

The Influence on Surface Air Temperatures3.4
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Figure 3.8

Composite mean sea surface height anomalies [m] in ASSIM, related to
strong (a-c), weak (d-f), and neutral (g-i) OHT50N phases. I show compos-
ites at lag 0 (a,d,g) and composite mean SSH 3-5 (b,e,h) and 7-9 (c,f,i)
years after strong and weak OHT50N phases. Stippling indicates signifi-
cance at the 99% level.

SHFs are correlated with OHT50N in similar areas as SSTs: in the
subpolar gyre region and South of the gulf stream front (fig. 3.10a-c, cf.
fig. 3.3). Unlike with SSTs, SHFs are negatively correlated to OHT50N
variability: positive phases of ocean heat transport are associated with
later upward surface heat fluxes. As positive SST anomalies largely coin-
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cide with upward SHFs, it can be concluded that the ocean dominates
surface temperature changes in these areas on decadal time scales. Inter-
estingly, I find very little dependence of the correlations of SHFs with
OHT50N on the amount of years by which OHT leads. This indicates that
the flux of heat from the ocean into the atmosphere is relatively constant.
However, I do find a slight increase in SHF anomalies with lead time,
particularly in the subpolar gyre region.

SAT anomalies in the North Atlantic region are also highly cor-
related to OHT50N variability. With increasing lag (OHT50N anomalies
lead), the area of significant positive correlations increases strongly (fig.
3.10d-f). SAT variability is significantly correlated to OHT50N phases
over the northeast Atlantic, Scandinavia, the Iberian Peninsula, and large
parts of northern Africa at lag 0 (fig. 3.10d). With increasing years that
OHT50N anomalies lead, significant SAT correlations propagate inland,
covering much of Europe and the Arabian Peninsula when OHT50N
leads by 3-5 years, after which correlations stay largely constant (fig.
3.10e,f). This shows a robust statistical relationship between OHT50N
variability and annual mean surface temperature variability over Europe
on the decadal time scale. To better understand the specific influence of
OHT50N phases on European SATs, I now examine the mean SHF and
SAT state connected to strong and weak phases of OHT50N.
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Figure 3.9

Composite mean SST anomalies [K] in ASSIM, related to strong (a-c),
weak (d-f), and neutral (g-i) OHT50N phases. I show composites at lag 0
(a,d,g) and composite mean SSTs 3-5 (b,e,h) and 7-9 (c,f,i) years after
strong and weak OHT50N phases. Stippling indicates significance at the
99% level. Contours show significant (at the 99% level) net ocean-atmos-
phere surface heat fluxes into the ocean (solid contours) and out of the
ocean (dashed contours).

Significant composite mean SHFs (contours in fig. 3.9; upward
SHFs generally correspond to positive SST anomalies and vice versa)
show some asymmetries between strong and weak OHT50N phases,
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which highlights the impact of OHT dynamics on surface heat fluxes.
Note that I use total values and not anomalies for SHFs. Specifically, a
zonal asymmetry appears after 7-9 years with upward SHFs across most
of the North Atlantic between 50-55°N and 20-50°W where SST compos-
ites are high after strong OHT50N phases (fig. 3.9c). I find downward
SHFs in the Labrador Sea and in the northeast Atlantic between 50-55°N
and 10-20°W where SST composites are weak after weak OHT50N phases
(fig. 3.9f). These areas can be regarded as areas where SHFs contribute
strongly to SST variability alongside OHT. This finding indicates that
the ocean influences the atmosphere more strongly after strong OHT50N
phases than after weak OHT50N phases, which might lead to different
SAT signatures related to strong and weak OHT50N phases.
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Figure 3.10

Point-by-point correlation of OHT50N with ocean-atmosphere surface heat
fluxes in ASSIM at lag 0 (a) and when OHT50N leads by 3-5 years (b) and
7-9 years (c), and with surface air temperatures at lag 0 (d) and when
OHT50N leads by 3-5 years (e) and 7-9 years (f). Stippling indicates signifi-
cant correlations at the 99% level.

I find distinct signals of strong and weak OHT50N phases in SATs
over Europe. Specifically, strong OHT50N phases are followed by positive
temperature anomalies over the subpolar gyre and western and northern
Europe that increase with increasing lag (fig. 3.11a-c), whereas weak
OHT50N phases are followed by significant SAT anomalies over the sub-
polar gyre and Europe in general with the strongest anomaly over east-
ern Europe (fig. 3.11d-f). This could indicate a northward shift of the
jet stream with stronger warming in the northeast Atlantic after strong
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OHT50N phases as indicated by the composite mean SST analysis shown
in figure 3.9. Interestingly, there is almost no significant signal in com-
posite mean SATs following neutral OHT50N phases (fig. 3.11g-i), which
indicates that, on decadal time scales, the characteristic SST pattern and
the physical mechanism preconditioning its formation - for both strong
and weak OHT50N phases - play an important role in modulating Euro-
pean SAT anomalies. However, SATs vary strongly on the seasonal time
scale. I will therefore now examine the connection of seasonal SATs to
OHT50N variability in the subpolar North Atlantic on the decadal time
scale. Because of the limited influence of neutral OHT50N phases on
European SATs I find here, I will henceforth focus exclusively on strong
and weak OHT50N phases.
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Figure 3.11

Composite mean SAT anomalies [K] in ASSIM, related to strong (a-c),
weak (d-f), and neutral (g-i) OHT50N phases. I show composites at lag 0
(a,d,g) and composite mean SSTs 3-5 (b,e,h) and 7-9 (c,f,i) years after
strong and weak OHT50N phases. Stippling indicates significance at the
99% level.

The analysis of seasonal mean SHFs and SATs allows me to assess

Seasonal Impact of Ocean Dynamics on the
Atmosphere

3.5
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the oceanic influence on SATs at the seasonal level as suggested by e.g.
Arthun et al. (2017). Because of the strong SST signal on the decadal time
scale (cf. fig. 3.9), I focus on composite mean SHFs and SATs in ASSIM
7-9 years after strong and weak OHT50N phases.

I generally find upward SHFs after strong OHT50N phases and
downward SHFs after weak OHT50N phases (fig. 3.12a-j). SHFs are
strong in winter and fall after both strong and weak OHT50N phases,
and after strong OHT50N phases in spring (fig. 3.12b,c,e,g,j). Winter and
spring SHF, too, show the zonal asymmetry I found on annual mean
SHFs (cf. fig. 3.9) with strong SHFs towards the western North Atlantic
after strong OHT50N phases and towards the eastern North Atlantic after
weak OHT50N phases (fig. 3.12b,c,g,h). These findings indicate that low-
frequency variability from the ocean is transported into the atmosphere
most strongly in winter, spring and fall, influencing SATs. They further
indicate an asymmetric influence of strong and weak phases of subpolar
OHT on seasonal SATs.

The response of seasonal SATs is generally symmetric between
strong and weak OHT50N phases over land (fig. 3.12l-o,q-t). There are
some exceptions: in winter, SATs over Scandinavia show strong anom-
alies after both strong and weak OHT50N phases. However, the anom-
alies only differ strongly from the mean variability after weak OHT50N
phases. The large areas of strong but insignificant wintertime SAT anom-
aly around Scandinavia indicate a high overall temperature variability in
that season and area - this is likely related to the impact of the winter
North Atlantic Oscillation (e.g. Visbeck et al., 2001). In summer, SAT
anomalies are significant over Scandinavia after weak OHT50N phases,
and significant over large parts of western Europe and the UK after
strong phases of OHT50N. As I find little connection of SHF and SAT
anomalies of any same season, there likely is a seasonal-scale lag in the
influence of SHF anomalies on SAT variability over Europe (as suggested
by e.g. Czaja and Frankignoul, 2002). On the decadal time scale time,
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any SAT signal is likely to be modulated by the ocean. Further, a connec-
tion of SAT anomalies over Scandinavia to subpolar OHT variability is in
line with the findings from Arthun et al. (2017), which indicates that the
mechanism leading to the characteristic SST pattern might play a role in
modulating the decadal SAT prediction skill they find over Scandinavia.
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Figure 3.12

Composite mean SHFs [W/m2] in ASSIM when strong (a-e) and weak (f-j)
OHT50N phases lead by 7-9 years. I show composites for annual (first
row), JFM (second row), AMJ (third row), JAS (fourth row) and OND
(fifth row) means. Stippling indicates significance at the 90% level.
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In this chapter, I show in an initialized version of the MPI-ESM-LR
that the suggestion of Zhang and Zhang (2015) that the ocean heat trans-
port in the North Atlantic region modulates SST variability has merit.
However, some of my findings require discussion, like the role of the
AMV in my findings, the model specificity of my findings, the contribu-
tion of strong and weak OHT50N phases to SST variability, and the role
of ocean-atmosphere surface heat fluxes.

The Atlantic Multidecadal Variability (AMV) is a major driver of
North Atlantic temperature variability (e.g. Clement et al., 2015; Zhang
et al., 2016). The mechanism I describe here, as well as the characteristic
SST pattern, seem to be closely related to the AMV in the MPI-ESM-LR
(fig. 3.13). A connection of a similar SST shape to the AMV was also
shown in Delworth et al. (2017). In my study, OHT50N leads the AMV
by 8 years (max. correlation: 0.9), which indicates that the ocean at least
contributes to the formation of the AMV. As a result, the physical mech-
anism invoked in this study can be seen not only as a contributor to
decadal SST variability in the northeast Atlantic, but also as a contribu-
tor to AMV variability on the same time scale. Note that the AMV time
series in ASSIM is also closely connected with the AMV in HadISST (fig.
3.13), which is an indication that ASSIM reflects real climate variability in
the North Atlantic reasonably well.

Discussion3.6
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Figure 3.12

Time series from ASSIM of OHT50N anomalies (solid line, [PW]), mean
temperature anomalies in the box indicated in figs. 4.5, 4.6 (stippled line,
[K]), and AMV as defined as average SST anomalies between 0 and 60°N
in the North Atlantic (dashed line, [K]). I also show the AMV time series
from HadISST observations [K] in narrow dashes. Time series are low-
pass filtered with an 11-year running mean.

A major caveat of the results I present here using ASSIM is the use
of three ensemble members of one model. The small ensemble size was
in the past shown to be appropriate to study North Atlantic climate vari-
ability (Müller et al., 2014, 2015). To some degree, my findings have to be
interpreted as model-specific. In particular, I find an eastward displace-
ment of the characteristic SST pattern which connected to the OHT50N
variability compared to Zhang and Zhang (2015), while finding a very
similar dynamical explanation for the origin of the characteristic SST
pattern. This indicates that the MPI-ESM-LR reacts similarly to OHT
anomalies in the North Atlantic as the GFDL CM2.1 used in Zhang and
Zhang (2015), but these anomalies affect a different area in the North
Atlantic. The more eastward characteristic SST pattern could indicate a
more zonal Gulf Stream in the MPI-ESM compared to the GFDL model
- in that case, the use of a higher resolution model might alleviate this
problem (see e.g. Drews and Greatbatch, 2017). However, as the physical
mechanism leading to the variability patterns identified here is consis-
tent with previous publications, the conclusion that OHT in the subpolar
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North Atlantic influences SST variability as described above - probably
somewhat further to the west - is valid.

An important finding from this research is the asymmetric
response of North Atlantic SSTs to strong and weak phases of subpolar
OHT. As a result, stronger and more persistent temperature anomalies
can be expected in the North Atlantic after strong than after weak
OHT50N phases. An implication of this finding is of methodological
nature: it suggests that simple correlation analyses are not enough to
understand the dynamics of a system. While this finding is not necessar-
ily new, this study emphasizes again that conclusions drawn from a cor-
relation study should be taken with a pinch of salt, and deeper analyses
of different possible states of a system are needed to fully comprehend
its dynamics.

I find different lengths of strong and weak OHT50N phases in
ASSIM (cf. fig. 3.1). Although the numbers of years of strong and weak
OHT50N as identified by the criterion I define are similar (weak OHT50N :
36 years; strong OHT50N : 40 years), strong OHT50N phases appear more
coherently than weak ones. This might affect the composite mean analy-
sis I conduct, as longer OHT phases might also have a more pronounced
impact on SSTs. I will take up this issue in chapter 5 of this dissertation,
attempting to resolve it.

This study generally supports the suggestion by earlier studies that
temperatures in the eastern North Atlantic are controlled by oceanic
heat advection, while temperatures in the western North Atlantic are
controlled by surface heat fluxes (e.g. Robson et al., 2017). This study
suggests, however, that this notion depends on the strength of ocean
heat transport. When OHT50N is strong, I find in ASSIM that the north-
east Atlantic is strongly influenced by ocean heat advection. During and
after weak OHT50N, SHFs become more important in the modulation
of surface temperatures in the northeast Atlantic (fig. 3.9). This might
be related to the weaker underlying UOHC anomaly following a weak
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OHT50N phase.

I show that decadal variability of North Atlantic SSTs is strongly
influenced by lowfrequency ocean heat transport variability in the MPI-
ESM-LR. As ocean variability is thought to modulate climate predictabil-
ity on decadal time scales, I will analyze in the upcoming chapter the
influence of the dynamical mechanism presented above on the skill of
decadal surface temperature hindcasts in the North Atlantic region.

In the previous chapter I show that the suggestion by Zhang and
Zhang (2015) that ocean overturning variability in the subpolar North
Atlantic influences SST variability in the North Atlantic region for up to
a decade ahead has merit. Besides describing the physical mechanism
leading to the characteristic SST pattern, Zhang and Zhang (2015)
hypothesized that this physical mechanism influences surface temper-
ature prediction skill in the North Atlantic on the same time scale. I
use this chapter to reconcile the findings from chapter 3 with Zhang’s
hypothesis.

In the past, case studies showed a connection of particularly strong
and weak phases of ocean overturning to high skill in SST hindcasts (e.g.
Yeager et al., 2012; Robson et al., 2013, 2014). The mechanism shown by
Zhang and Zhang (2015) suggests that findings from these case studies
are generally applicable. However, the influence of the physical mecha-
nism leading to the characteristic SST pattern on decadal surface temper-

Decadal Hindcasts in the North Atlantic
Region

4
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ature hindcast skill was not assessed so far.

This lack of systematic assessment of the influence of ocean over-
turning on decadal SST hindcast skill is mainly due to methodological
limitations. For such an assessment, a long time series with many indi-
vidual hindcast simulations is necessary to ensure statistically robust
results. The HC hindcast experiments for the period 1901-2010 that I
introduced earlier represent such a set of hindcast simulations.

This chapter builds on the connection between OHT50N, UOHC,
SSTs, SHFs and SATs described in chapter 3. I investigate systematically
whether and how predictability of these parameters on the decadal time
scale (3-5 years and 7-9 years ahead: at lead years 3-5 and 7-9), depends on
the strength of the OHT50N at the initialization of the hindcast. I evaluate
HC against ASSIM using anomaly correlation coefficients (ACCs), for the
entire time series, after strong, weak, and neutral OHT50N phases to con-
nect predictability to the physical mechanism leading to the characteris-
tic SST pattern. Comparing the influences of OHT variability and UOHC
persistence on the skill of decadal surface temperature hindcasts diag-
noses the relative contributions of strong and weak phases of OHT50N
and UOHC persistence to hindcast skill separately. I then examine the
influence of skillful SST hindcasts on the skill of decadal hindcasts of sea-
sonal surface air temperatures.
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Figure 4.1

Anomaly Correlation Coefficients (ACCs) of UOHC (upper 700m) from
the HC experiments against ASSIM at lead years 1 (a), 3-5 (b) and 7-9 (c). I
show ACCs for SSTs at lead years 1 (d), 3-5 (e) and 7-9 (f). Stippling indi-
cates significant ACCs at the 99% level.

For 1901-2010, I find upper ocean heat content to be significantly
predictable in the entire North Atlantic at lead year 1 with particularly
high ACCs in the northeast Atlantic (fig. 4.1a). At lead years 3-5 and 7-9,
I find significant ACCs for UOHC in the northeast Atlantic as well (figs.

Skillful Hindcasts of North Atlantic Surface
Temperatures

4.2
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4.1b,c). Similarly, SSTs show significant and high ACCs in the northeast
Atlantic at lead years 1, 3-5 and 7-9 (fig. 4.1d-f).

High ACCs for annual mean surface heat fluxes and surface air
temperatures (fig. 4.2) are mostly confined to regions of strong SST
anomalies in the composite means (cf. fig. 3.3). This indicates a strong
influence of the ocean on the skill of atmospheric hindcasts on decadal
time scales. Like ACCs of SST hindcasts, ACCs of both SHF and SAT
hindcasts are highest at lead year 1 and decrease afterwards. However,
for SHFs and SATs, ACCs decrease much faster than for both UOHC
and SSTs which is due to a comparatively strong influence of predictable
low-frequency ocean variability on UOHC and SSTs. The shape of high
decadal SHF ACCs appears more closely connected to SST variability
than to SHF variability (cf. figs. 3.3, 3.10).

Unlike in the correlation analysis (cf. fig. 3.10), ACCs for annual
mean SATs are insignificant over Europe on the decadal time scale (fig.
4.2). This is an indication that HC is not capable of capturing SAT vari-
ability accurately. However, the strong seasonality of SHF and SAT vari-
ability (cf. fig. 3.12) prevents any final conclusions at this point.
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Figure 4.2

Anomaly Correlation Coefficients (ACCs) of SHFs from the HC experi-
ments against ASSIM at lead years 1 (a), 3-5 (b) and 7-9 (c). I show ACCs
for SATs at lead years 1 (d), 3-5 (e) and 7-9 (f). Stippling indicates signifi-
cant ACCs at the 99% level.

SHF ACCs show strong seasonality at all lead times (fig. 4.3). SHFs
are mostly predictable in winter (JFM) and spring (AMJ) on all time
scales, however, the spring predictability is clearly the strongest among
the seasons on decadal time scales. Incidentally, spring is the season that
shows one of the strongest SHF anomalies at the decadal time scale (cf.
fig. 3.12). Further, this analysis indicates that SHFs are strongest and
most predictable in spring. This could lead to sigificant ACCs of spring
SATs on the decadal time scale.
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ACCs for SATs show less seasonality than those of SHFs (fig. 4.4).
However, some features stand out: ACCs at lead year 1 are highest in
winter and spring (fig. 4.4d,g), SAT-ACCs at lead years 3-5 are almost
independent of the season, and ACCs 7-9 years into the future are high-
est in winter, spring and fall. These features are not obviously connected
to SHF predictability, but rather to the very little seasonal difference in
hindcast skill that SSTs exhibit (not shown). This indicates that surface
heat flux predictability does not have to be high to precondition good
ACCs for SAT, but that SAT predictability is more directly connected to
SST predictability. I do not find significant ACCs in decadal hindcasts for
seasonal SATs over land, not even in spring: significant ACCs are con-
fined to the ocean areas.
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Figure 4.3

Anomaly Correlation Coefficients (ACCs) of SHFs from the HC experi-
ments against ASSIM at lead years 1 (left column), 3-5 (middle column)
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and 7-9 (right column). Lines show ACCs for annual means (a-c), JFM
means (d-f), AMJ means (g-i), JAS means (j-l), and OND means (m-o).
Stippling indicates significant ACCs at the 99% level.

The general structure of both UOHC and SST ACCs at lead years
3-5 and 7-9 resembles the shape of the characteristic SST pattern (cf. fig.
3.3) and the composite mean UOHC and SST patterns I discuss above (cf.
figs. 3.7, 3.9). This indicates that OHT50N variability. I will examine this
hypothesis in the upcoming section by looking at ACCs after strong and
weak OHT50N phases separately.
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Figure 4.4

Anomaly Correlation Coefficients (ACCs) of SATs from the HC experi-
ments against ASSIM at lead years 1 (left column), 3-5 (middle column)
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and 7-9 (right column). Lines show ACCs for annual means (a-c), JFM
means (d-f), AMJ means (g-i), JAS means (j-l), and OND means (m-o).
Stippling indicates significant ACCs at the 99% level.

I analyze ACCs of UOHC in the North Atlantic for hindcasts started
in years of strong (fig. 4.5a-c), weak (fig. 4.5d-f) and neutral (fig. 4.5g-i)
OHT50N phases separately to identify the specific influence of the phase
of OHT50N on hindcast skill in the North Atlantic. I find significant
UOHC ACCs at all lead years after both strong and weak OHT50N anom-
alies. At lead year 1, ACCs are very similar after strong and weak
OHT50N phases, and for the entire time series (figs. 4.5a,d; 4.1a). At lead
years 3-5 and 7-9, ACCs are generally higher after both strong and weak
phases of OHT50N than for the entire time series. Large areas of signifi-
cant UOHC ACCs, like the area South of the Gulf Stream front and the
Tropical Atlantic, show almost no asymmetry between strong and weak
OHT50N phases. However, I find significant ACCs in large parts of the
northeast Atlantic after strong OHT50N phases (fig. 4.5b,c), while ACCs
are significant in the central North Atlantic after weak OHT50N phases
(fig. 4.5e,f).

After neutral OHT50N phases, ACCs for UOHC in the North
Atlantic are only high at lead year 1 (fig. 4.5g). At lead years 3-5, the
ACC pattern for UOHC after neutral OHT50N phases resembles that fol-
lowing weak OHT50N phases, although it is slightly weaker after neutral
phases (fig. 4.5h). This indicates that, on this time scale, OHT50N variabil-
ity influences ACCs of UOHC hindcasts only weakly. A possible explana-

Hindcast Skill after Subsampling OHT Phases4.3

Influence of Ocean Heat Transport on Decadal Predictability in the
Ocean

4.3.1
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tion for the emergence of high UOHC ACCs on this time scale could be
the persistence of UOHC. At lead years 7-9, there is no considerable ACC
pattern in UOHC hindcasts following neutral OHT50N phases (fig. 4.5i),
underscoring the high impact of OHT50N variability on hindcast skill on
this time scale.

ACCs of SSTs behave very similar to ACCs of UOHC. SST ACCs are
significant at all lead years after both strong and weak OHT50N phases
(fig. 4.6). At lead year 1 they are similar to ACCs diagnosed for the entire
time series (figs. 4.6a,d; 4.1d). At lead years 3-5 and 7-9, I find significant
ACCs of SSTs to be higher and to cover larger areas after strong than after
weak OHT50N phases (fig. 4.6b,c,e,f). The conclusions concerning neutral
OHT50N phases are the same for SST as they are for UOHC (fig. 4.6g-i).
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Figure 4.5

Anomaly Correlation Coefficients (ACCs) Upper ocean heat content
(upper 700m) from the HC experiments against ASSIM after strong (a-c),
weak (d-f), and neutral (g-i) OHT50N phases. I show ACCs at lead years 1
(a,d,g), 3-5 (b,e,h) and 7-9 (c,f,i). Stippled areas indicate significant ACCs
at the 99% level. The black box is the area that UOHC is averaged over for
figure 4.7a.

Many areas of significant ACCs for SSTs South of 40°N do not show
much asymmetry between strong and weak OHT50N phases. This agrees
with my findings from the UOHC predictability study and suggests
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that the influence of OHT50N on asymmetric predictability of UOHC
and SSTs in those areas is limited. However, I find a zonal difference in
ACCs between strong and weak OHT50N phases with significant ACCs
in the northeast Atlantic after strong OHT50N phases, and more centrally
located significant ACCs after weak OHT50N phases.

I attribute the zonal asymmetry I find between the ACC patterns of
both UOHC and SSTs at lead years 7-9 after strong and weak OHT50N
phases to the zonally asymmetric significant composite mean SHFs I
show in figures 3.7 and 3.9. After both strong and weak OHT50N phases,
I find predictable UOHC and SSTs in areas that are characterized by little
heat exchange with the atmosphere. This is an indication that significant
ACCs are indeed connected to low-frequency ocean dynamics and that
ACCs decrease strongly where the atmosphere contributes strongly to
surface temperature variability.
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Figure 4.6

Anomaly Correlation Coefficients (ACCs) of SSTs from HC against ASSIM
after strong (a-c), weak (d-f), and neutral (g-i) OHT50N phases. I show
ACCs at lead years 1 (a,d,g), 3-5 (b,e,h) and 7-9 (c,f,i). Stippled areas indi-
cate significant ACCs at the 99% level. The black box is the area that SSTs
are averaged over for figure 4.7b.

ACCs for average UOHC and SSTs in the northeast Atlantic
(45-55°N, 45-10°W, cf. black box in figs. 4.5 and 4.6) further illustrate
the overall effect of strong and weak OHT50N phases on decadal pre-
dictability of UOHC and SSTs (fig. 4.7). Note that the chosen box covers
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the area where I find significant predictability of UOHC and SSTs after
both strong and weak OHT50N phases. ACCs evaluated over the entire
time series for both UOHC and SSTs are generally high in the northeast
Atlantic for up to 9 lead years and outperform persistence forecast at lead
years > 1 (fig. 4.7).

After strong OHT50N phases, ACCs in the northeast Atlantic are
significantly higher than after weak OHT50N phases and for the entire
time series at lead years 2-7 for UOHC (fig. 4.7a). Similarly, I find ACCs
for UOHC after weak OHT50N phases that are significantly lower than
ACCs after strong OHT50N phases and for the entire time series for lead
years 2-6. UOHC ACCs after weak OHT50N phases re-emerge after lead
year 7, which might be connected to trends in UOHC anomalies.

SSTs show significantly higher ACCs after strong than after weak
OHT50N phases and for the entire time series at lead years 2-9 (fig.
4.7b). After weak OHT50N phases, ACCs for SSTs largely follow ACCs for
the entire time series. This analysis provides further indication that the
mechanism leading to the characteristic SST pattern influences UOHC
and SST predictability on the decadal time scale. Strong OHT50N phases
are particularly important in modulating ACCs for both UOHC and SSTs
in the North Atlantic, as they lead to higher predictability of SSTs on the
decadal time scale. I explore next whether a similar conclusion can be
drawn for dynamical hindcasts of annual and seasonal mean SHFs and
SATs.
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Figure 4.7

Anomaly Correlation Coefficients (ACCs) for average UOHC (a), and SSTs
(b) over the box indicated in figs. 4.5,4.6 against lead time. I use ASSIM as
a reference. The black line shows ACCs over the entire time series, green
shows persistence forecast, the blue line shows predictability after weak,
and the red line predictability after strong OHT50N phases. The dashed
lines indicate the interquartile ranges around the mean predictability for
each color. Wherever these dashed lines do not overlap, two lines can be
considered statistically significantly different. Solid points represent
ACCs significant at the 99% level.

SHF ACCs after strong, weak and neutral OHT50N phases (fig. 4.8a-
f) largely resemble the ACC pattern found for the entire time series for
SHFs at all lags (cf. fig. 4.2). Asymmetries between strong, weak and neu-
tral OHT50N phases are similar to those found for SSTs. This underpins
that ACCs of SHF hindcasts are more closely connected to SST-ACCs and
SST variability than to SHF variability. As ACCs of SST hindcasts are gen-
erally high where SHFs are low, this shows that SHFs can be predicted
skillfully in areas where they are low. This limits the impact on SAT pre-
dictability that can be expected from predictable surface heat fluxes.
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Subsampling for different phases of subpolar OHT does not
improve ACCs of decadal surface temperature hindcasts over Europe
(fig. 4.9). In general, ACCs of decadal SAT hindcasts are closely related
to those of SSTs: there are high ACCs over the ocean, particularly in the
characteristic SST pattern region. Consequently, ACCs of SATs over the
ocean are on the decadal time scale highest after strong OHT50N phases,
intermediately high after weak OHT50N phases, and virtually absent
after neutral OHT50N phases (fig. 4.9c,f,i). This leads me to conclude that
there is an influence of the OHT50N phase on ACCs of SAT hindcasts,
and that this influence is particularly strong on the decadal time scale.
However, HC and ASSIM do not show an influence of OHT50N on SAT-
ACCs for hindcasts over land. This might change when evaluating SAT
hindcasts for different seasons instead of annual means.
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Figure 4.8

Anomaly Correlation Coefficients (ACCs) for SHFs from HC against
ASSIM after strong (a-c), weak (d-f), and neutral (g-i) OHT50N phases. I
show ACCs at lead years 1 (a,d,g), 3-5 (b,e,h) and 7-9 (c,f,i). Stippled areas
indicate significant ACCs at the 99% level.

ACCs are high for seasonal mean SHFs at lead year 7-9 in areas
where ACCs are high for SSTs at the same lead time after both strong and

Influence of Ocean Heat Transport on Hindcasts of Seasonal SATs4.3.2
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weak OHT50N phases (fig. 4.10a-j; cf. fig. 4.6c,f). Specifically, SHF ACCs
are high in the northeast Atlantic after strong, and high in the central
North Atlantic after weak OHT50N phases. ACCs for SHFs are signifi-
cant in the North Atlantic in spring after strong OHT50N (fig. 4.10c). In
all other seasons, ACCs for SHFs are largely insignificant following both
strong and weak OHT50N. Following the assumption that SAT ACCs of
decadal hindcasts are modulated by the ocean, this suggests that there
could be limited ACCs for SAT hindcasts at seasonal means in HC,
because the predictable SST signal is only in spring transported into the
atmosphere.
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Figure 4.9

Anomaly Correlation Coefficients (ACCs) for SATs from HC against
ASSIM after strong (a-c), weak (d-f), and neutral (g-i) OHT50N phases. I
show ACCs at lead years 1 (a,d,g), 3-5 (b,e,h) and 7-9 (c,f,i). Stippled areas
indicate significant ACCs at the 99% level.

ACCs are only marginally significant for seasonal mean SATs over
land at lead year 7-9 after strong and weak OHT50N phases (fig. 4.10k-t).
The shape of these ACCs also bears little resemblence to the composite
mean SAT patterns I have identified before (cf. fig 3.12). There is some
seasonal variability in SAT ACCs, but this appears to not be linked to

DECADAL HINDCASTS IN THE NORTH ATLANTIC REGION

71



SHF predictability. Specifically, I find high ACCs for SATs over the ocean
across all seasons, while ACCs are generally low over land. The shape
of these ACCs generally follows that of predictable SSTs. This illustrates
that, in HC, the influence of North Atlantic OHT variability on SAT hind-
casts is limited to the areas that are immediately influenced by the ocean.
However, the predictability of SHFs does not play a role in the pre-
diction of SATs. HC does apparently not properly represent teleconnec-
tion mechanisms that could transport SST anomalies to Europe at both
annual and seasonal means.

This chapter demonstrates that the mechanism suggested by Zhang
and Zhang (2015) and discussed in chapter 3 modulates SST predictabil-
ity on decadal time scales. The results presented here are generally in
line with previous studies of decadal hindcasts of North Atlantic surface
temperatures (e.g. Matei et al., 2012; Robson et al., 2013, 2014; Müller
et al., 2014). Here, I discuss some of my findings, like the model speci-
ficity of my findings, ACCs (or lack thereof) following neutral OHT50N
phases, and the missing ACCs of dynamical surface air temperature
hindcasts. I will also discuss the hindcast analyses on subsampled time
series using OHT50N variability, and give an indication of how the influ-
ence of OHT50N dynamics on ACCs for hindcasts compares to that of
UOHC persistence. I will then highlight some implications of this study
that require further analysis.

Discussion4.4
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Figure 4.10

Anomaly Correlation Coefficients (ACCs) at lead year 7-9 from HC
against ASSIM for SHFs after strong (a-e) and weak (f-j) OHT50N phases,
and SAT ACCs after strong (k-o) and weak (p-t) OHT50N phases. I use
annual (first row), JFM (second row), AMJ (third row), JAS (fourth row)
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and OND (fifth row) means. Stippling indicates significance at the 99%
level.

In this hindcast study, I use one model with three ensemble mem-
bers, and evaluate hindcasts against the assimilation experiment, which
might well introduce some model-specificity into my findings. This is
underlined by the fact that I find only little signal for SST hindcasts in an
evaluation of ACCs against HadISST observations (not shown). My find-
ings from the previous chapter, however, show that the North Atlantic
AMV variability in HadISST is closely connected to the AMV in the
model. This study therefore supports the notion brought forward fre-
quently (e.g. Boer et al., 2016; Yeager and Robson, 2017), that the AMV
is a driver of North Atlantic temperature predictability. Meanwhile, it is
likely that a lack of ACCs of hindcasts evaluated against observations
originates from the zonal displacement of the characteristic SST pattern
due to a too zonal Gulf Stream in ASSIM and HC, and that both ASSIM
and HC in fact get SST variability generally right. In that case, the influ-
ence of different phases of subpolar OHT on the skill of SST hindcasts
would be expected further west than shown in this study. The finding of
Müller et al. (2014), showing that ASSIM and HC produce reasonable cli-
mate variability, supports this statement.

I find that for both UOHC and SSTs, decadal predictability is con-
nected to the physical mechanism leading to the characteristic SST pat-
tern. The general absence of high ACCs in hindcasts started in neutral
OHT50N phases supports this claim. The Labrador Sea plays a peculiar
role in this context, as it is covered by the characteristic SST pattern but I
do not find SST predictability there. This can be attributed to the incapa-
bility of the non-initialized MPI-ESM-LR to represent temperature vari-
ability in the Labrador Sea (e.g. Brune et al., 2017) and stronger surface
heat fluxes in that area, which overwrite the predictable temperature sig-
nal from the ocean (cf. fig. 3.9). Therefore, predictability is lost faster in
that area than elsewhere in the North Atlantic region.
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The influence of the characteristic SST pattern on ACCs of dynam-
ical surface air temperature hindcasts on the decadal time scale is found
to be limited in this dissertation. Arthun et al. (2017) showed skill for
decadal winter SATs over Scandinavia that is connected to ocean heat
transport using observations and a statistical model. I find no pre-
dictability in dynamical hindcasts of that area, except for coastal zones
(cf. fig. 4.10). This lack of ACCs is likely an artifact of the limited resolu-
tion, non-stratosphere resolving nature (this would be necessary for the
representation of teleconnections; e.g. Hoskins and Karoly, 1981), or few
ensemble members of the model setup I use (for a recent discussion of
dynamic multiyear hindcasts over land, see e.g. Sheen et al., 2017). How-
ever, my results support Arthun et al. (2017) in that there appears to be
a connection of OHT50N to Scandinavian SATs (cf. fig. 3.12). This could
be invoked to improve decadal SAT predictability over Scandinavia in
dynamical models using a larger ensemble, more frequent hindcast ini-
tialization, or a higher resolution model that better represents atmos-
pheric variability at all levels.

I find a strong influence of phases of subpolar OHT on the skill of
decadal hindcasts for SSTs in the North Atlantic with a possibility for
good ACCs of atmospheric surface temperature hindcasts over land in
future studies. The findings presented so far do not, however, reconcile
the debate in previous studies on the relative effects of UOHC persis-
tence and dynamical ocean processes (i.e. overturning or OHT) on hind-
cast skill on these time scales yet (e.g. Müller et al., 2014; Yeager et al.,
2012; Robson et al., 2013). In figure 4.11, an analogue to figure 4.7 is
shown, but instead of OHT50N strength, I use UOHC in the box indi-
cated in figures 4.5 and 4.6 for subsampling to exemplify the influence of
UOHC persistence on ACCs of UOHC and SSTs in hindcasts. On short
time scales of up to 4 years, UOHC persistence influences the skill of
temperature hindcasts about as strongly as OHT dynamics. This is coin-
cident with the time scale on which I find high ACCs for UOHC and
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SSTs after all OHT50N strengths including neutral phases, which under-
pins my hypothesis that those ACCs arise from UOHC persistence. After
lead year 5, hindcasts subsampled for strong OHT50N phases consis-
tently outperform those subsampled for any phase of UOHC persistence.
This shows that, while both UOHC persistence and OHT dynamics are
equally important for temperature hindcasts 3-5 years into the future and
on shorter time scales, subpolar OHT dynamics are more important than
UOHC persistence in shaping ACCs at lead years 7-9.

ASSIM produces more coherent strong OHT50N phases than weak
ones. As in the previous chapter, this asymmetric coherence of OHT50N
phases could impact the findings of this chapter by making strong
OHT50N phases appear more impactful than they are. Unfortunately, this
problem cannot be approached in this study directly, but will have to be
studied in more detail in a more conceptual model setup. I will take up
this issue in the next chapter.
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Figure 4.11

Anomaly Correlation Coefficients (ACCs) for average UOHC (a), and SSTs
(b) over the box indicated in figs. 4.5,4.6 against lead time. I use ASSIM as
a reference. The black line shows ACCs over the entire time series, green
shows persistence forecast, the blue line shows predictability after weak,
and the red line predictability after strong phases of upper ocean heat
content in the black box. This figure illustrates the influence of UOHC
persistence on the skill of UOHC and SST hindcasts. The dashed lines
indicate the interquartile ranges around the mean predictability for each
color. Solid points represent ACCs significant at the 99% level.

Brune et al. (2017) show that the estimated skill of decadal surface
temperature hindcasts in the North Atlantic varies depending on the
time that the skill is evaluated for. This finding implies that the use of
any decadal hindcast skill estimate - produced for the past - is limited for
the estimation of the credibility of an actual forecast. This study suggests
ocean heat transport in the subpolar North Atlantic as a possible indica-
tor of credibility of an actual forecast. As there is currently no long-term
observational data set of OHT in the subpolar North Atlantic, this sug-
gestion can currently not be verified against observations. The OSNAP
project (Lozier et al., 2017) aims to construct such an observational data
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set. As it could be used as an indicator for the credibility of an actual
forecast, the data set produced by the OSNAP campaign holds exciting
opportunities for the suggestions I bring forward in this study.

Chapters 3 and 4 of this dissertation suggest that the skill of
decadal surface temperature predictions in the North Atlantic depends
on the strength of subpolar ocean heat transport in the Atlantic ocean at
the start of the prediction. This finding could be used to judge the credi-
bility that would be expected from an actual temperature forecast. These
results provoke two thoughts in particular:

(i) Is the climate variability found in ASSIM representative of other
modeled or observed climate variability? Assimilation model experi-
ments combine a model’s climate dynamics with observed dynamics.
It is therefore inherently unclear from the analysis of ASSIM presented
here - and in fact for the interpretation of all assimilation-based hindcast
studies - whether its dynamics should be interpreted as model or
observed dynamics. It is therefore important to place the climate vari-
ability produced in the assimilation model experiment in the broader
context of climate variability produced by the climate model that is used,
and of observed climate variability. Specifically, I discuss in chapter 3 that
ASSIM shows peculiarly coherent strong OHT50N hases. This coherence
needs closer examination concerning its origins.

(ii) As ACCs of SSTs in the North Atlantic are higher after phases of
strong ocean heat transport than after weak phases, I conclude that hind-
cast skill changes over time. This indicates that no study of decadal cli-
mate hindcast skill performed for a fixed period in the past enables con-
clusions for the credibility of an actual forecast. Chapter 4 suggests that
the credibility of a decadal forecast of North Atlantic surface tempera-
tures could be judged using the phase of OHT50N at the start of the fore-

Implications of this Research4.5
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cast. Before concrete solutions to this problem can be evaluated, though,
the non-stationarity of decadal surface temperature hindcast skill has to
be understood better. Moreover, the influence of the phase of subpolar
OHT at the beginning of an individual prediction on the quality of the
prediction has to be evaluated for individual forecasts, not a time-aver-
age, to make the prediction quality found for the past transferable to the
credibility of individual forecasts.

In the next chapter, I will take up thought (i) and place climate vari-
ability found in the ASSIM simulation in the context of the MPI-ESM-
LR and observations, and discuss how these findings help to interpret
the results presented in the first two chapters. Subsequently, addressing
thought (ii), I will explore the time-dependence (or non-stationarity) of
decadal SST hindcast skill in the 20th century using HC and HadISST
observations. This will advance our understanding of the role that phys-
ical processes play in the modulation of decadal climate predictability.
Moreover, this chapter will fundamentally question the way that decadal
climate hindcast studies are interpreted, and suggests improvements that
should be made to enable a translation of hindcast skill estimates to fore-
casts.

A fundamental problem with modelling studies is that it is from
the model itself unclear how representative dynamical features found
in models are with respect to observations. In assimilation experiments,
this problem gets an additional dimension as the mixture of observed

Understanding North Atlantic Climate
Variability in the MPI-ESM-LR

5
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and model dynamics prevents a clear attribution of found dynamical
processes to either model or observed dynamics. This makes it difficult
to judge the representativeness of assimilation model dynamics with
respect to observations. In the previous chapters, I find peculiar subpolar
North Atlantic ocean heat transport dynamics in ASSIM: strong phases
of OHT50N appear much more coherently than weak ones. Here, I pre-
sent an attempt to resolve the issue of placing dynamical variability
found in assimilation model experiments between model variability and
observed variability using the North Atlantic ocean heat transport vari-
ability found in ASSIM as a case study.

In chapter 3, I show that in ASSIM there is a large influence of
subsurface ocean overturning variability, i.e. subpolar ocean heat trans-
port, on SST variability in the North Atlantic. This physical mechanism
also shows a pronounced influence on the skill of decadal surface tem-
perature hindcasts in the North Atlantic region. In particular, I find
very coherent strong OHT50N phases with a strong influence on North
Atlantic SSTs and incoherent weak OHT50N phases with a weaker influ-
ence on North Atlantic SSTs. However, from the presented analyses
alone, it cannot be understood how realistic this link between OHT, SSTs
and surface temperature hindcast skill is, and where this finding has to
be placed in terms of model and observed variability.

I will in this chapter attempt to resolve the question of robustness of
the previously presented physical mechanism leading to the characteris-
tic SST pattern in the face of similarly coherent strong and weak OHT50N
phases. This chapter further addresses the question whether particu-
larly coherent OHT50N phases are likely to be found in non-initialized
model simulations or observations. I approach this problem by com-
paring ASSIM to uninitialized simulations with the same version of the
MPI-ESM-LR, and to HadISST observations. The 1000-year-long piCon-
trol simulation of constant pre-industrial greenhouse gas concentrations
(piControl) can be used to approximate internal variability produced by
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the MPI-ESM-LR (e.g. Olonscheck and Notz, 2017). A historical simula-
tion forced with the historical greenhouse gas concentrations from 1896
to 2005 (HIST) enables a direct comparison of ASSIM to a non-initialized
version of the MPI-ESM-LR for the same time period. An assessment
of two climate change scenarios (RCP4.5 and RCP8.5) in the MPI-ESM-
LR for the period 2191-2300 points out possible changes of the physical
mechanism leading to the characteristic SST pattern with global warm-
ing.

This chapter will predominantly focus on the asymmetric influence
of strong and weak OHT50N phases on North Atlantic SSTs I find in the
previous chapters. I will then proceed and examine whether the model
on its own is able to reproduce the coherent strong OHT50N phases
found in ASSIM, and assess the influence of the coherence of OHT50N
phases on SST variability. In the process, I will also look at HadISST
observations of sea surface temperatures to estimate the representative-
ness of my findings for observed climate variability. This will help to
place the findings from the last two chapters in the broader climatic con-
text, and to judge their representativeness.

In the piControl model simulation, annual mean AMOC maximum
and total OHT50N are correlated 63% for the full 1000 year time series
(fig. 5.1a). While this is much lower than the correlation in ASSIM, it is
still significant at the 99% confidence level. Moreover, AMOC maximum
and total OHT variability in the North Atlantic appear very similar in
their meridional variabilities (fig. 5.1b,c). Therefore, the piControl sim-
ulation produces ocean overturning variability that supports my find-
ing that OHT and AMOC dynamics are connected in the North Atlantic.
However, the low correlation between AMOC and OHT variability at

Ocean Overturning Dynamics in the Non-Initialized
MPI-ESM-LR

5.2

UNDERSTANDING NORTH ATLANTIC CLIMATE VARIABILITY IN THE MPI-ESM-LR

81



50°N in piControl might indicate that the very high correlation I find
in ASSIM is somewhat peculiar. Unlike in ASSIM, strong and weak
OHT50N phases selected by the criterion of half a standard deviation
above or below the mean state, are in piControl both similarly long and
appear similarly coherent (dots in fig. 5.1a).

The piControl simulation alone is not sufficient to place findings
from ASSIM in the context of the MPI-ESM-LR variability as there is
no greenhouse gas forcing in piControl while there is such forcing in
ASSIM. I therefore compare OHT and OHT-SST dynamics from ASSIM
not only to piControl, but also to a historical simulation without data
assimilation. To further understand the influence of greenhouse gas forc-
ing, I also compare ocean overturning dynamics found in ASSIM to a
simulation with the MPI-ESM-LR forced by the RCP4.5 scenario. While
I use the full 1000 years in piControl to include all modes of variability
that the model produces on its own, I use the 110 year period between
1896 and 2005 from HIST to make the results as comparable as possible
to the 1901 to 2010 period used in ASSIM. In the RCP4.5 experiment,
I use the last 110 years of the simulation, 2191 to 2300, to capture the
maximum greenhouse gas concentration influence on ocean dynamics.
To better understand possible AMOC-OHT variability the MPI-ESM-LR
can produce, I will reproduce figures from the beginning of this disser-
tation using piControl, HIST, and RCP4.5 model runs.
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Figure 5.1

(a) Detrended anomalies of AMOC maximum at 50°N (dashed line, [Sv])
and total OHT50N (solid line, [10−1 PW]) in the piControl-simulation. The
grey area denotes a half standard deviation above and below the mean of
the previous 30 years. Strong and weak OHT50N phases, i.e. years where
the solid line lies outside the grey area, are marked with red and blue
dots at the bottom, respectively. Hovmöller Diagrams of OHT anomalies
(b) and AMOC maximum anomalies (c) illustrates the development of
strong and weak anomalies of OHT and AMOC in space (y-axis, [°lati-
tude]) and time (x-axis [yrs]). OHT and AMOC time series are detrended
at each latitude.

There is a tendency to a southward propagation of OHT anomalies
that originate at 50°N in all model simulations (fig. 5.2). However, in
none of the simulations is this southward propagation even closely as
pronounced as in ASSIM. The HIST simulation shows subdecadal OHT
dynamics relatively similar to those found in ASSIM, while the south-
ward propagation of OHT phases in the North Atlantic is very weak in
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piControl and virtually non-existent in RCP4.5. Following the hypothe-
sis of Zhang and Zhang (2015) that OHT dynamics influence ocean heat
convergence and that the southward propagation plays a crucial role in
this, subpolar OHT phases should be followed by a weak ocean heat con-
vergence signal in the North Atlantic in piControl, HIST and RCP4.5.

Figure 5.2

Lead-lag correlations of OHT at different latitudes with OHT50N found in
(a) ASSIM, (b) piControl, (c) HIST, and (d) RCP4.5. Time series are
detrended at every latitude individually. Positive lags indicate that OHT
leads and vice versa.

Indeed, ocean heat convergence in the North Atlantic shows less
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connection to OHT50N variability in piControl, HIST and RCP4.5 than in
ASSIM (fig. 5.3). However, all simulations show a (predominantly weak)
dipole ocean heat convergence anomaly signal between a positive cor-
relation to OHT50N North of roughly 40°N when OHT50N leads by 2-8
years, and an instant negative correlation South of 40°N. This effect is
most pronounced in HIST and piControl, and less strong in RCP4.5.
These findings support the role of southward propagation of OHT
phases in the formation of ocean heat convergence in the subpolar North
Atlantic ocean several years later. Do these OHT50N phases influence
North Atlantic SSTs, as shown in ASSIM, in piControl as well?

Both UOHC (fig. 5.4a-c) and SSTs (fig. 5.4d-f) in the subpolar North
Atlantic appear to be modulated by OHT50N up to 9 years earlier in
piControl. The shape of these correlations resembles that found in the
same analysis in ASSIM (cf. fig. 3.3). This indicates that a similar mecha-
nism gives rise to surface temperature anomalies of this shape in piCon-
trol and ASSIM, which is also in line with the ocean heat convergence
analysis presented above. Particularly at long lags, i.e. 7-9 years after
OHT50N phases, the UOHC and SST correlations to OHT50N are much
lower in piControl than in ASSIM. This relatively shortly-lived influence
of OHT50N on SSTs, too, is in line with the diagnose of southward prop-
agating OHT anomalies and associated ocean heat convergence anom-
alies that are shorter live in piControl than in ASSIM. It therefore appears
that the mechanism leading to the characteristic SST pattern in ASSIM
works in piControl as well. However, this finding does not address the
‘problem’ of differently coherent OHT50N phases in ASSIM, as described
above. To better understand OHT50N and SST dynamics in piControl,
HIST and RCP4.5, I will therefore now examine strong and weak phases
of OHT50N separately.
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Figure 5.3

Lead-lag correlations of ocean heat convergence at different latitudes with
OHT50N found in (a) ASSIM, (b) piControl, (c) HIST, and (d) RCP4.5.
Time series are detrended at every latitude individually. Positive lags
indicate that OHT leads and vice versa.
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Figure 5.4

Point-by-point correlation of OHT50N with upper ocean heat content of
the upper 700m in the North Atlantic in piControl at lag 0 (a) and when
OHT50N leads by 3-5 years (b) and 7-9 years (c), and with SSTs at lag 0 (d)
and when OHT50N leads by 3-5 years (e) and 7-9 years (f). Stippling indi-
cates significant correlations at the 99% level.

In each model simulation, I subsample ocean states in which
OHT50N is above or below the mean of the preceding 30 years. I then con-
struct composite mean OHT anomalies across latitudes after strong and
weak OHT50N phases to examine strong and weak OHT50N phases sepa-

Subsampled Overturning States in the MPI-ESM-LR5.3
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rately. This enables me to place the findings from the variability analysis
in ASSIM in the context of overall OHT variability in the MPI-ESM-LR.

In piControl, the southward propagation of OHT phases in the sub-
polar North Atlantic is comparable to ASSIM (fig. 5.5a-c). However, the
OHT dynamics show a more shorter-lived signal in piControl than in
ASSIM, and after 5 years, there is no difference in the OHT anomaly
North of 40°N between strong and weak OHT50N phases in piControl.
The HIST simulation shows a much stronger OHT propagation signal
after weak OHT50N phases than after strong OHT50N phases, while the
overall OHT propagation signal is clearly southward with time in both
cases (fig. 5.5d,e). The strong anomaly after weak OHT50N phases could
indicate a stronger influence of OHT50N variability on surface temper-
atures after weak OHT50N phases than after strong OHT50N phases in
HIST. In the RCP4.5 simulation, there is a very short-lived southward
OHT50N propagation signal after strong OHT50N phases for up to 4
years. However, I find almost no southward propagation of OHT50N
phases after weak OHT50N phases (fig. 5.5g,h). This indicates a weak
influence of weak OHT50N phases on SSTs, and a strong, but shortlived,
influence of strong OHT50N phases on SSTs for up to 4 years in RCP4.5.
After neutral OHT50N phases, composite mean OHT anomalies are neg-
ligible in all model runs (fig. 5.5c,f,i). The weak influence of weak
OHT50N phases and stronger influence of strong OHT50N phases on
ocean heat convergence can be assessed by comparing composite mean
cumulative ocean heat convergence signals in the three MPI-ESM-LR
simulations.

Cumulative ocean heat convergence signals after strong and weak
OHT50N phases in the subpolar North Atlantic are largely symmetric in
piControl (fig. 5.6a,b). There appears, however, to be a slight asymme-
try in the ocean heat convergence signals North of 50°N with a stronger
convergence signal after strong OHT50N phases, which is consistent with
my findings from the OHT propagation signals. Similarly, the ocean heat
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convergence signal South of 40°N is stronger after weak than after strong
OHT50N phases, indicating a seesaw-like mechanism connecting OHT
anomalies to ocean heat convergence similar to that found for seasonal
AMOC dynamics in the subtropical Atlantic in Duchez et al. (2016). By
contrast, neutral phases show no distinctive ocean heat convergence sig-
nal (fig. 5.6c).
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Figure 5.5

Composite mean OHT anomalies [10−1 PW] before, during, and after
strong (left column), weak (middle column), and neutral (right column)
OHT50N anomalies shown in latitude against lag. (a-c) show piControl,
(d-f) show HIST, and (g-i) show RCP4.5. Time series are detrended at
every latitude individually. Positive lags indicate that OHT leads and vice
versa.

In HIST, there is a pronounced asymmetry in cumulative ocean
heat convergence signal in the subpolar North Atlantic between strong
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and weak OHT50N phases with a much stronger heat convergence signal
after strong OHT50N phases than after weak ones (fig. 5.6d,e). This is
counter-intuitive to the findings from the OHT propagation analysis that
suggested a strong influence from weak OHT50N phases. Additionally,
neutral OHT50N phases that are not connected to distinct composite
mean OHT anomalies in HIST, are connected to a quite strong ocean heat
convergence anomaly (fig. 5.6f). This indicates that other mechanisms
than the mechanism leading to the characteristic SST pattern are at work
in the North Atlantic in HIST. On the other hand, this result is in line with
the findings from piControl and ASSIM, that both show a stronger influ-
ence of strong than of weak OHT50N phases on ocean heat convergence.
Therefore, an alternative interpretation of this finding is that the strong
influence of strong OHT50N phases on subpolar ocean heat convergence
in the North Atlantic is less sensitive to the strength of the southward
propagating OHT anomaly than it is to the sign of the anomaly. Con-
sistently with this hypothesis, strong OHT50N phases influence subpolar
North Atlantic ocean heat convergence more strongly than weak OHT50N
phases in RCP4.5 (fig. 5.6g,h).
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Figure 5.6

Composite mean cumulative heat convergence anomalies [PW] before,
during, and after strong (left column), weak (middle column), and neutral
(right column) OHT50N anomalies shown in latitude against lag. Heat
convergence anomalies are calculated cumulatively with respect to strong
and weak OHT50N phases. (a-c) show piControl, (d-f) show HIST, and (g-
i) show RCP4.5. Time series are detrended at every latitude individually.
Positive lags indicate that OHT leads and vice versa.

Composite mean SSTs in piControl after strong and weak OHT50N
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phases show some asymmetry (fig. 5.7). While composites are similarly
significant in their difference from the mean variability across all lags
and after both strong and weak OHT50N phases, composite mean SST
anomalies are stronger 3-5 years after strong OHT50N phases than after
weak OHT50N phases. At longer lags, i.e. 7-9 years, there are much
weaker composite mean SST anomalies in piControl than in ASSIM (cf.
fig. 3.9), which is related to the shorter-lived OHT and ocean heat conver-
gence anomalies in piControl. After neutral OHT50N phases, there is no
distinct composite mean SST pattern at all lags (fig. 5.7g-i). Remarkably,
unlike in ASSIM, composite mean ocean-atmosphere surface heat fluxes
show almost no asymmetry between strong and weak OHT50N phases
in piControl. However, as heat fluxes are assimilated in ASSIM, they are
directly related to climate variability in the twentieth century reanalysis
(Compo et al., 2011) - it is therefore likely that the asymmetry of SHFs
found in ASSIM is more realistic than symmteric SHFs in piControl with
respect to observations.

In the historical and the RCP4.5 simulation, a conclusive SST pat-
tern is difficult to find at any decadal lag after both strong and weak
OHT50N phases (figs. 5.8, 5.9). While a coherent SST pattern appears
in both simulations at lag 0, SSTs in the subpolar North Atlantic show
largely insignificant anomalies at longer lags. An exception is the north-
east Atlantic 7-9 years after strong OHT50N phases in HIST, where I find a
scattered area of barely significant SST anomalies without a strong signal
after weak OHT50N phases (fig. 5.8b,e). As there is no consistent signal in
that area throughout lead times shorter than 7-9 years, the physical con-
sistency of this SST anomaly is debatable. In both model simulations, no
clear SST signal can be identified following neutral OHT50N phases.
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Figure 5.7

Composite mean SST anomalies [K] in piControl, related to strong (a-c),
weak (d-f), and neutral (g-i) OHT50N phases. I show composites at lag 0
(a,d,g) and composite mean SSH 3-5 (b,e,h) and 7-9 (c,f,i) after strong and
weak OHT50N phases. Stippling indicates significance at the 99% level.
Contours show significant (at the 99% level) net ocean-atmosphere sur-
face heat fluxes into the ocean (solid contours) and out of the ocean
(dashed contours).

SHFs show largely inconclusive patterns in both simulations at
long time lags, although strong SHFs appear to be linked to places with

UNDERSTANDING NORTH ATLANTIC CLIMATE VARIABILITY IN THE MPI-ESM-LR

94



relatively strong SST anomalies. These findings show that ocean heat
convergence anomalies that persist for only a few years indeed have a
weak influence on SST patterns, and if there is an influence on SSTs, I find
it on short lags of only a few years. This analysis therefore shows that the
mechanism leading to the characteristic SST pattern in ASSIM is robust
in other simulations with the MPI-ESM-LR, however, the uninitialized
model seems to generally generate shorter OHT50N phases than ASSIM
that are characterized by an influence of OHT50N phases on SST anom-
alies on time scales no longer than a few years. Besides ASSIM, only the
piControl simulation is characterized by an influence of subpolar OHT
variability on SST anomalies on the decadal time scale.
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Figure 5.8

Composite mean SST anomalies [K] in HIST, related to strong (a-c), weak
(d-f), and neutral (g-i) OHT50N phases. I show composites at lag 0 (a,d,g)
and composite mean SSH 3-5 (b,e,h) and 7-9 (c,f,i) after strong and weak
OHT50N phases. Stippling indicates significance at the 99% level. Con-
tours show significant (at the 99% level) net ocean-atmosphere surface
heat fluxes into the ocean (solid contours) and out of the ocean (dashed
contours).
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Attempts to reproduce the characteristic SST pattern in other simu-
lations with the MPI-ESM-LR were relatively successful, which inspires
confidence that the non-linear influence of strong and weak OHT50N
phases on North Atlantic SSTs found in ASSIM is robust. The character-
istic SST pattern is particularly strong in the piControl simulation, which
indicates that the model alone is able to produce this SST pattern with-
out external forcing. The characteristic SST pattern is therefore unlikely
to originate exclusively from global warming. The decadal OHT50N vari-
ability I find in ASSIM in the subpolar North Atlantic appears, however,
somewhat peculiar concerning the coherence of OHT50N phases.

An important finding from this analysis is that the time scale on
which OHT50N phases influence SST variability in the North Atlantic
depends on the coherence of OHT50N phases. More coherent OHT50N
phases lead to more long-lived SST anomalies in the North Atlantic.
However, none of the analyses performed above give an indication if and
by how much ASSIM over- or underrepresents the coherence of strong
and weak OHT50N phases in the subpolar North Atlantic.

Possible Reasons for Differently Coherent OHT
Phases

5.4
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Figure 5.9

Composite mean SST anomalies [K] in RCP4.5, related to strong (a-c),
weak (d-f), and neutral (g-i) OHT50N phases. I show composites at lag 0
(a,d,g) and composite mean SSH 3-5 (b,e,h) and 7-9 (c,f,i) after strong and
weak OHT50N phases. Stippling indicates significance at the 99% level.
Contours show significant (at the 99% level) net ocean-atmosphere sur-
face heat fluxes into the ocean (solid contours) and out of the ocean
(dashed contours).

The previous findings show that there is a difference in the length
of subpolar OHT phases between ASSIM and piControl: strong OHT50N
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phases are coherent in both ASSIM and piControl, while weak OHT50N
phases are similarly coherent in piControl, but relatively incoherent in
ASSIM. There are three possible reasons for these different coherences,
and understanding which one is responsible for these differences will
help to place the findings from the analysis of ASSIM in a wider context.
The different coherences of strong and weak OHT50N phases in ASSIM
could: reflect an artifact of ‘subsampling’ in the sense that the piControl
simulation encompasses 1000 years, whereas ASSIM is 110 years long
and more coherent strong and more incoherent weak OHT50N phases
might occur naturally; be related to the data assimilation that is applied
in ASSIM which might perturb the model, leading to less coherent weak
or more coherent strong OHT50N phases; or be an effect of global warm-
ing, as there is no change of mean greenhouse gas concentration in
piControl whereas greenhouse gases increase in ASSIM. I will in the fol-
lowing use the piControl, HIST, RCP4.5 simulations alongside an RCP8.5
simulation and HadISST observations (Rayner et al., 2003) and assess
which of these processes produces which coherence of subpolar OHT
phases.
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Figure 5.10

The ratio of years of strong OHT50N that are framed by years of strong
OHT50N with respect to total years of strong OHT50N on the x-axis,
shown against the ratio of years of weak OHT50N that are framed by years
of weak OHT50N with respect to total years of weak OHT50N on the y-
axis. The red dot shows this ratio in ASSIM (1901-2010), the yellow one in
piControl (1000 years), the dark blue one in HIST (1896-2005), and the
light blue one in RCP4.5 (2191-2300). Black crosses denote ratio combina-
tions calculated from all 110 year long subperiods of piControl.
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Strong OHT50N phases in ASSIM are much more coherent than
strong OHT50N phases produced by the MPI-ESM-LR as internal vari-
ability (fig. 5.10). I compare the coherences of strong and weak OHT50N
phases in ASSIM, HIST, and RCP4.5 to all possible 110-year-long seg-
ments of the 1000-year-long piControl simulation to estimate the coher-
ences for subpolar OHT variability generated as internal variability by
the MPI-ESM-LR. Only the coherences of strong and weak OHT50N
phases in HIST and RCP4.5, and the coherence of weak OHT50N phases
in ASSIM lie within the range of variability that is produced by the MPI-
ESM-LR. This indicates that the assimilation applied to the MPI-ESM-
LR to produce ASSIM generates overly coherent strong OHT phases in
the subpolar North Atlantic. An implication of this finding is that ASSIM
might over-estimate the influence of strong OHT50N phases on northeast
Atlantic SST anomalies.

To get a better indication of how to place the coherence of not only
OHT50N phases, but also SST variability in ASSIM in the wider context,
I also show coherences of strong and weak phases of the Atlantic Mul-
tidecadal Variability (AMV, fig. 5.11). The AMV is an important mode
of temperature and climate variability in the North Atlantic that may be
linked to AMOC and OHT variability (e.g. Delworth et al., 2017). I here
define the AMV as average SSTs in the North Atlantic between the equa-
tor and 60°N; the AMV index in ASSIM is highly correlated to the char-
acteristic SST pattern index at no lag (0.96, cf. fig. 3.13), and therefore
also highly correlated to OHT50N. It is worth noting that, unlike previous
studies, I do not smooth SSTs with a low-pass filter in the calculation of
the AMV index for this chapter.
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Figure 5.11

The ratio of years of strong AMV that are framed by years of strong AMV
with respect to total years of strong AMV on the x-axis, shown against the
ratio of years of weak AMV that are framed by years of weak OHT50N at
AMV with respect to total years of AMV on the y-axis. The red dot shows
this ratio in ASSIM (1901-2010), the yellow one in piControl (1000 years),
the dark blue one in HIST (1896-2005), the light blue one in RCP4.5
(2191-2300), the purple one in RCP8.5 (2191-2300), and the orange one in
HadISST observations (1901-2010). Black crosses denote ratio combina-
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tions calculated from all 110 year long subperiods of piControl.

Coherences for the AMV index from the same model experiments
as before, as well as the RCP8.5 scenario and HadISST observations for
1901-2010, show that positive AMV phases produced by ASSIM are more
coherent than others (fig. 5.11). Similar to my previous findings concern-
ing subpolar OHT variability, both positive and negative AMV indices in
HIST, RCP4.5 and RCP8.5, and in HadISST, and negative AMV indices in
ASSIM show coherence that lies within the internal variability produced
by piControl. These findings appear to confirm my previous conclusion
concerning the reliability of the variability produced by ASSIM.

As mentioned before, I do not smooth SSTs in the calculation of the
AMV index for this analysis. However, for the correlation and composite
mean analyses performed throughout this dissertation, I use three-year
average SSTs to filter out year-to-year variability. I show coherences for
the AMV index smoothed with a three-year running mean in figure 5.12.
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Figure 5.12

The ratio of years of strong AMV that are framed by years of strong AMV
with respect to total years of strong AMV on the x-axis, shown against the
ratio of years of weak AMV that are framed by years of weak AMV with
respect to total years of weak AMV on the y-axis. Time series were
smoothed with a three-year running mean prior to the definition of strong
and weak phases. The red dot shows this ratio in ASSIM (1901-2010), the
yellow one in piControl (1000 years), the dark blue one in HIST
(1896-2005), the light blue one in RCP4.5 (2191-2300), the purple one in
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RCP8.5 (2191-2300), and the orange one in HadISST observations
(1901-2010). Black crosses denote ratio combinations calculated from all
110 year long subperiods of piControl.

When a 3-year running mean is applied, the coherences of positive
and negative AMV phases of all model simulations (including ASSIM)
and HadISST lie within the spread of coherences generated by piControl
(fig 5.12). This effect is robust for OHT50N phases (not shown). These
findings indicate that the coherence of phases of North Atlantic climate
variability in ASSIM is accurate in the realm of model variability of
the MPI-ESM-LR on a frequency lower than the year-to-year variability.
Accordingly, ASSIM can be used to study representative SST dynamics
when at least a 3-year-smoothing is applied. However, there is still a pro-
nounced discrepancy between the coherence ratios in the model simu-
lations and in HadISST, which indicates that the year-to-year AMV vari-
ability in the MPI-ESM-LR does not accurately reproduce observed AMV
variability. This discrepancy, however, diminishes when a low-pass filter
of more than 10 years is applied (not shown).

The coherences of OHT50N and AMV phases are consistently lower
for RCP4.5 and RCP8.5 than for the other model simulations and obser-
vations. Moreover, RCP8.5 shows lower coherence than RCP4.5. This
indicates that with progressing greenhouse gas forcing, i.e. progressing
global warming, the coherence of OHT50N and AMV phases can be
expected to decrease. This effect is particularly strong at the end of the
22nd century.

Here I present some evidence that the physical mechanism leading
to the characteristic SST pattern in the North Atlantic is robust within the
MPI-ESM-LR. Strong OHT50N phases consistently lead to stronger SST
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anomalies up to a decade later than weak OHT50N phases. The coherence
of OHT50N and AMV phases found in ASSIM can be produced by the
MPI-ESM-LR if a running mean of three or more years is applied. This
illustrates that the mode of climate variability found in chapter 3 does
likely not exaggerate strongly the influence of OHT variability on SSTs. I
will in this section discuss the limitations of this finding.

I show that strong OHT phases in the subpolar North Atlantic con-
sistently influence SSTs stronger than weak OHT50N phases in simula-
tions with the MPI-ESM-LR that are characterized by similarly coher-
ent strong and weak OHT50N phases. However, the physical reason for
the more pronounced influence of strong phases of subpolar OHT on
North Atlantic SSTs compared to weak cases remains unexplored in this
research. A deeper physical understanding of why this asymmetry exists
- and in fact whether it can also be found in other global climate models
- would advance our understanding of North Atlantic climate variability
and should therefore be subject to future research. While a more in-depth
examination on this effect lies outside the scope of this dissertation, I rec-
ommend a timely study here.

A comparison to the piControl, HIST and RCP model simulations
and HadISST observations shows that the coherence of annual mean
OHT50N phases in the ASSIM simulation is unlikely to stem from inter-
nal model variability or greenhouse gas forcing. Therefore, the strong
coherence of strong OHT50N phases in ASSIM likely originates from the
data assimilation that is applied. However, when using a three-year run-
ning mean to smooth OHT and SST variability, the coherence of strong
and weak phases of OHT50N and North Atlantic SSTs in ASSIM lies well
within the model variability produced by piControl. The data assim-
ilation might therefore act to smoothen year-to-year ocean variability
in ASSIM. In the smoothed case, differently coherent OHT50N and SST
phases in ASSIM and piControl, HIST and RCP can therefore be attrib-
uted to internal variability; they occur naturally in the MPI-ESM-LR. This
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indicates that the mechanism leading to the characteristic SST pattern
that I present here does not change strongly with greenhouse gas forcing
by the 20th century. I do however find a tendency for weaker coherence of
both strong and weak OHT50N phases in the last century of the RCP8.5
scenario. This indicates that the influence of strong and weak OHT50N
phases on North Atlantic surface temperatures might become shorter-
lived with climate change.

These findings have an important implication for the research pre-
sented in chapter 4 of this dissertation: as the stronger influence of strong
phases of subpolar OHT on North Atlantic surface temperatures com-
pared to weak phases can be shown to be robust, the higher ACCs
for SSTs after strong than after weak OHT50N phases in the northeast
Atlantic up to a decade into the future are likely to be robust as well.

After showing that changes in decadal surface temperatures are
robustly modulated by subpolar OHT, and therefore the skill of decadal
SST hindcasts likely depends on OHT50N variability, I will now discuss
an important implication of this finding: the non-stationarity of hindcast
skill. Because the findings presented up to now do leave us with a prob-
lem: if decadal hindcast skill varied in the past, how can we know how
credible individual forecasts will be?

Conventional studies of decadal climate hindcasts result in one esti-
mate of hindcast skill for the period in the past that is analyzed (e.g.

Non-Stationary North Atlantic Surface
Temperature Prediction Skill
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Boer et al., 2016; Yeager and Robson, 2017). This skill estimate is often
assumed to reflect the credibility of any individual forecast that would
be conducted using the same prediction system, independent of the cli-
mate state from which this forecast is started. However, for the 20th cen-
tury the skill of SST hindcasts in the North Atlantic region depends on
the strength of subpolar ocean heat transport at the start of the hind-
cast (see chapter 4). The skill of hindcasts is therefore time-dependent -
or non-stationary (as also suggested by Weisheimer et al., 2017; Brune et
al., 2017; O’Reilly et al., 2017). As a consequence, hindcast skill estimates
derived for one period in the past do not represent the skill of all individ-
ual hindcasts within that period. Previous research suggested that this
issue might be addressed by using longer and hence statistically more
robust estimates of hindcast skill (e.g. Müller et al., 2014). While the esti-
mate of mean hindcast skill would indeed be on better statistical grounds
when a longer hindcast period is used, these hindcast skill estimates are
unlikely to be appropriate to judge the credibility of individual decadal
climate forecasts.

Here, I suggest the opposite: instead of using longer hindcast
experiments to estimate skill in a representative way, I suggest to focus
on shorter periods of time, but to take the climate state in which these
hindcasts are started into account. This analysis, performed for the 20th

century, will indicate a way to estimate the credibility that can be
expected from an individual decadal climate forecast based on the cli-
mate state at the start of that forecast.

ACCs of decadal North Atlantic SST hindcasts on average depend
on the strength of subpolar OHT at the beginning of the hindcast (see
chapter 4). OHT50N variability is therefore likely a good indicator of
decadal SST hindcast skill. This finding, however, is based on the average
skill of approximately 40 individual decadal SST hindcasts after each
strong and weak OHT50N phases. The specific influence of the phase of
subpolar North Atlantic OHT at the start of one individual hindcast on
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the skill of that hindcast to predict North Atlantic SSTs on the decadal
time scale is therefore still unclear. This problem, however, cannot be
solved using conventional metrics of hindcast skill, as all conventional
hindcast skill metrics are based on an assessment of multiple years. In
this chapter, I propose an approach based on ACCs that connects the skill
of individual hindcasts to the climatic state at the beginning of each hind-
cast.

Here, I test my approach to estimating the skill of individual hind-
casts on hindcasts of the AMV in the 20th century. I show in chapter 3 that
the variability of the AMV is closely connected to that of the character-
istic SST pattern, i.e. its evolution can be expected to be connected to the
physical mechanism leading to the characteristic SST pattern and there-
fore variability of OHT50N. Chapter 3 also suggests that AMV variability
in ASSIM is similar to observed AMV variability. Hindcast skill for the
AMV can therefore be evaluated against observations, which enhances
the conclusions that can be drawn from this analysis.

I first show for the period 1901-2010 the non-stationarity of AMV
hindcast skill in HC against HadISST observations to illustrate the
spread of hindcast skills that is averaged over by estimating average
hindcast skill for a long time series. I then propose a new metric that
connects the skill of individual AMV hindcasts with the strength of sub-
polar North Atlantic OHT at the beginning of each individual hindcast.
Findings from this chapter enable a direct translation of hindcast skill to
the credibility of an individual decadal SST forecast in the North Atlantic
region, using the strength of subpolar OHT at the start of the forecast as
an indicator.

An analysis of the non-stationarity of AMV hindcast skill for the
20th

Non-Stationary Decadal AMV Hindcast Skill6.2
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century illustrates the range of skill that conventional hindcast skill
estimates average over. As an example, AMV hindcast skill in the 20th

century at lead years 3-5 ranges between ACCs of 0 and 0.8 for a running
40-year window (fig. 6.1). One assessment of AMV hindcast skill for 40
years in the 20th century is therefore not representative of the hindcast
skill that would be found in a different 40-year-period. Figure 6.1 there-
fore supports the findings by Brune et al. (2017) and illustrates that SST
hindcast skill in the North Atlantic is nonstationary. A hindcast skill esti-
mate derived for the entire 20th century thus averages over many differ-
ently predictable climate states, and is therefore not representative of the
skill of every individual hindcast within that period.

Figure 6.1

ACCs for the AMV (integrated SSTs in the North Atlantic between 0 and
60°N) evaluated against HadISST at lead years 3-5. Black dots indicate
ACCs for a 40-year-long window around every dot. Green dots indicate
significant ACCs at the 99% level. Red and blue dots at the bottom of the
plot indicate strong and weak OHT50N phases in ASSIM as identified in
fig. 3.1.

AMV hindcast skill in the 20th century strongly depends on the
number of years that it is evaluated for (fig. 6.2). This dependence of
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AMV hindcast skill on the length of the evaluation period illustrates the
extent to which hindcast skill estimates over a certain period misrepre-
sent the skill of individual hindcasts within that period. Figure 6.2 shows
that differently long windows can lead to substantially different hind-
cast skill estimates for the same time period. Hindcast skill estimates
derived for short time periods are sometimes as high as skill estimates for
a longer time period, and sometimes lower. This illustrates that assess-
ing hindcast skill for a long period likely results in a high skill estimate
(as was shown by e.g. Müller et al., 2014), but that skill estimate does not
reflect the hindcast skill of every shorter time period within that period.
Thinking one step further, this analysis suggests that a hindcast skill esti-
mate derived for several years, however many, is unlikely to reflect the
hindcast skill of all individual hindcasts within that period.

The analysis presented above highlights that conventional mea-
sures of hindcast skill likely misrepresent the skill of individual hind-
casts, because conventional skill measures rely on an analysis of many
years. Because conventional hindcast skill estimates are not representa-
tive of the skill of individual hindcasts within the period they cover,
these skill estimates cannot be directly translated into the credibility
of an individual forecast. Estimating the credibility of an individual
forecast therefore requires an estimate of skill for individual hindcasts.
Showing that individual hindcasts are systematically more or less skillful
when they are started in certain climate states would enable translating
hindcast skill into forecast credibility by using the state of the climate
system a the start of a forecast as an indicator.

NON-STATIONARY NORTH ATLANTIC SURFACE TEMPERATURE PREDICTION SKILL

111



Figure 6.2

ACCs for the AMV evaluated against HadISST for lead years 3-5 as in fig-
ure 6.1, but for different running evaluation window lengths on the y-
axis. Crosses indicate significant ACCs at the 99% level.

In chapter 4, I demonstrate the average influence of strong, weak,
and neutral OHT50N phases on decadal SST hindcast skill in the North
Atlantic region. Could the phase of subpolar OHT at the start of a single
hindcast therefore be used as an indicator of the decadal AMV skill of
individual hindcasts? Figure 6.1 reveals no obvious connection between
OHT50N phases and non-stationary AMV hindcast skill. I will thus
approach this issue by comparing predicted AMV anomalies to observed
AMV anomalies for the period 1901-2010 individually, taking the
strength of OHT50N at the beginning of the prediction into account.

Individual predicted AMV anomalies at lead years 3-5 match rea-
sonably well to observed AMV anomalies for 1901-2010 (fig 6.3): The
majority of predicted AMV anomalies fall within one standard deviation
of the corresponding observed AMV anomalies. This good overall match

Towards Expected Prediction Skill6.3

NON-STATIONARY NORTH ATLANTIC SURFACE TEMPERATURE PREDICTION SKILL

112



between individual hindcasts and the corresponding observations
explains the high hindcast skill I find for the AMV in HC (cf. fig 6.1).

In some cases, the predicted AMV anomaly does not match the
observed AMV anomaly: the predicted AMV anomaly lies more than
one standard deviation away from the observed value (fig. 6.3). When
OHT50N is weak at the start of a hindcast, predicted AMV anomalies
do not match the observed AMV more often than when OHT50N is
strong or neutral at the start of a hindcast (33%/25%/23% hindcasts fol-
lowing weak/neutral/strong OHT50N phases do not match the obser-
vations). Individual AMV hindcasts are therefore more likely to match
the observed AMV anomaly after strong and neutral phases of subpolar
OHT than after weak OHT phases.
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Figure 6.3

AMV anomalies calculated by integrating North Atlantic SSTs between
the equator and 60°N [K] produced by HC against those observed in
HadISST for lead years 3-5. Red dots indicate a strong OHT50N phase in
ASSIM at the beginning of the hindcast according to the criterion of half a
standard deviation above or below the mean, while blue dots indicate
weak, and yellow dots indicate neutral OHT50N hases. The black line
shows the 1:1 line, the grey lines a full sample standard deviation from
the 1:1 line.
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Indicating on a time series of OHT50N individual hindcasts whose
AMV hindcasts do not match the observed anomaly reveals that these
years predominantly show OHT50N phases that fall within one standard
deviation of the mean state (fig. 6.4). Only two AMV hindcasts that were
started when OHT50N is more than one full standard deviation above the
mean, and four AMV hindcasts started when OHT50N is more than one
standard deviation below the mean, do not match the observed AMV
anomaly. Therefore, a single predicted AMV anomaly can be expected
to lie within one standard deviation from the observed AMV anomaly
when the prediction is initialized in a year in which OHT50N is at least
one standard deviation above or below the mean.

Analyses shown in chapter 4 indicate that the connection of strong
OHT50N phases to North Atlantic SST hindcast skill is stronger at lead
years 7-9 than at lead years 3-5. This finding appears to be robust when
analyzing whether AMV hindcasts at lead years 7-9 lie within one stan-
dard deviation of the observed AMV anomaly: Only few AMV hindcasts
started in years of strong subpolar OHT do not match the observed AMV
anomaly (31%/48%/18% hindcasts following weak/neutral/strong
OHT50N phases do not match the observations; fig. 6.5). It is noteworthy
that almost half of the hindcasts following neutral OHT50N phases pre-
dict an AMV anomaly that is more than one standard deviation off the
observed value. This finding supports earlier results that attributed indi-
vidual predicted AMV anomalies matching observations to either strong
or weak phases of subpolar OHT at the initialization of the hindcast.
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Figure 6.4

OHT50N anomalies in ASSIM. The grey area denotes half a standard devi-
ation of the OHT50N of the preceding 30 years. Dashed lines show a full
standard deviation of the preceding 30 years around the mean. Red
crosses show years after which predicted AMV anomalies at lead years
3-5 lie more than one standard deviation away from the observed AMV
anomaly (figure 6.3).
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Figure 6.5

AMV anomalies calculated by integrating North Atlantic SSTs between
the equator and 60°N [K] produced by HC against those observed in
HadISST for lead years 7-9. Red dots indicate a strong OHT50N phase in
ASSIM at the beginning of the hindcast according to the criterion of half a
standard deviation above or below the mean, while blue dots indicate
weak, and yellow dots indicate neutral OHT50N phases. The black line
shows the 1:1 line, the grey lines a full sample standard deviation from
the 1:1 line.
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Predicted AMV anomalies, which do not match the observed value
at lead year 7-9, predominantly correspond to OHT50N anomalies within
one standard deviation from the mean state (fig. 6.6). If the OHT50N
anomaly is more than one standard deviation from the mean at the
beginning of an individual decadal AMV hindcast, the predicted AMV
anomaly can be expected to lie within one standard deviation of the
observed value. Exceptions are two cases where AMV hindcasts 7-9 years
ahead do not match observations after a strong OHT50N phase, and five
cases where AMV hindcasts do not match the observed AMV anomaly
after a weak OHT50N phase. The connection of strong and weak OHT50N
anomalies to the skill of decadal SST hindcasts in the North Atlantic,
found in chapter 4, is therefore largely valid for individual hindcasts.

Figure 6.6

OHT50N anomalies in ASSIM. The grey area denotes half a standard devi-
ation of the OHT50N of the preceding 30 years. Dashed lines show a full
standard deviation of the preceding 30 years around the mean. Red
crosses show years after which predicted AMV anomalies at lead years
7-9 lie more than one standard deviation away from the observed AMV
anomaly (figure 6.5).
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Findings presented in this chapter show that it is possible to con-
nect the strength of OHT50N at the start of an individual decadal AMV-
hindcast to the extent to which the predicted AMV matches the obser-
vations. When subpolar OHT shows an anomaly of more than one stan-
dard deviation above or below the mean at the beginning of a hindcast,
AMV hindcasts predominantly fall within one standard deviation of
the observed value. Strong phases of OHT50N consistently lead to AMV
hindcasts that fall within one standard deviation of the observed value.
This effect likely arises from the physical mechanism leading to the char-
acteristic SST pattern. AMV hindcast skill therefore depends on the cli-
mate state at the initialization of a hindcast. From this knowledge it can
be inferred that observing the strength of subpolar OHT at the start of an
individual SST forecast in the North Atlantic gives a good indication of
the credibility of that forecast.

The analysis presented here comes, like most analyses presented in
this dissertation, with the important caveat of the use of just one decadal
prediction system. Although I showed in chapter 5 that the variability
produced by ASSIM and HC is representative of model variability of the
MPI-ESM-LR, the findings presented here are the product of only one
model and will have to be replicated with other prediction systems to
assess their robustness. In this chapter, there is one more issue of model
specificity that needs to be discussed.

Ocean Heat Transport as an Indicator of Prediction
Skill: Limitations and Implications

6.4
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Figure 6.7

ACCs for the AMV (integrated SSTs in the North Atlantic between 0 and
60°N) evaluated against ASSIM at lead years 3-5. Black dots indicate
ACCs for a 40-year-long window around every dot. Green dots indicate
significant ACCs at the 99% level. Red and blue dots at the bottom of the
plot indicate strong and weak OHT50N phases in ASSIM as identified in
fig. 3.1.

The strong non-stationarity found in this section could well be a
model-artifact: maybe both ASSIM and HC produce unrealistic AMV
variability around the 1940s that decreases hindcast skill around this
time. An evaluation of AMV hindcasts in HC against ASSIM analogue to
figure 6.1 shows, however, that the strong decrease in ACCs around the
1940s is robust (fig. 6.7). Moreover, the high hindcast skill found prior
to 1930 suggests that the relative sparsity of observations in that time
period does not systematically decrease the skill of hindcasts for that
period. The non-stationary AMV hindcast skill I find in this section is
therefore likely to be connected to physical mechanisms rather than a
model artifact or connected to sparse observations.

The many years of neutral OHT50N phases around 1920 and 1940
that are connected to predicted AMV anomalies that do not match the
observed AMV (cf. fig. 6.4) explain the decrease in non-stationary AMV
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hindcast skill around the 1940s (cf. fig. 6.1). At that time, the time win-
dows used for evaluating hindcast skill include many individual AMV
hindcasts that do not match observations. The persistent phases of neu-
tral OHT50N in the 1920s and 1940s are therefore likely the reason for the
decreased AMV hindcast skill estimates in the mid-1940s.

This chapter also addresses the common assumption in hindcast
studies that the robustness of the hindcast skill estimate increases with
an increasing time window for which hindcasts are evaluated. My find-
ings show that this assumption generally holds for the statistical robust-
ness of hindcast skill. However, results presented here also illustrate that
a hindcast skill estimate calculated for a long period of time tends to
over- or (in rare cases) underestimate the skill of individual hindcasts
within that period. With growing length of the evaluation window of
hindcasts, this error increases. Long hindcast time series are thus, despite
their strong statistical rigour, less useful to estimate the credibility of an
individual forecast, than short hindcast time series.

The analysis presented here suggests that the skill of individual
hindcasts can be immediately translated into the credibility of an indi-
vidual forecast. An implicit assumption of this is that the physical mech-
anism used as an indicator for prediction skill does not change between
the period that it is tested for (here: the 20th century), and the forecasted
period. As I show in chapter 5 of this thesis that the physical mechanism
leading to the characteristic SST pattern is likely to only change with cli-
mate change by the end of the 22nd century, it is unlikely that this physi-
cal mechanism will change on the short term.

I demonstrate in this chapter that conventional hindcast skill esti-
mates are rarely suitable to estimate the credibility of a single forecast
when that forecast is started. Without taking physical mechanisms into
account, the skill derived by conventional hindcast studies cannot be
understood as representative for any individual forecast. If, however,
physical mechanisms like OHT50N variability and the mechanism lead-
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ing to the characteristic SST pattern are considered, the difference
between hindcast skill and the credibility of a forecast can be estimated,
and hindcast skill can be transferred to forecast credibility. This analysis
highlights that skill estimates derived from hindcast analysis have to
be based on individual years to be translateable to individual forecasts.
New skill measures going beyond the approach presented in this chap-
ter, will therefore have to be developed in the future and combined with
conventional hindcast skill estimates to truly estimate the credibility of
individual forecasts.

This dissertation explores the skill of decadal temperature pre-
dictions in the North Atlantic region. In the introduction I ask four
questions concerning the role of subpolar AMOC and ocean heat trans-
port for temperature variability and predictability in the North Atlantic
region. In this chapter I will first answer these questions one by one, then
draw final conclusions concerning the findings presented in this disser-
tation.

A study by Zhang and Zhang (2015) showed that variability of
ocean overturning in the subpolar North Atlantic influences SSTs in the
North Atlantic up to about a decade ahead. The resulting SST pattern is
characterized by a positive anomaly in the North Atlantic subpolar gyre
and a negative anomaly in the Gulf Stream region. The authors hypothe-
sized that the physical mechanism they proposed modulates the skill of
decadal SST predictions. Because Zhang and Zhang (2015) only show the
AMOC Fingerprint in the GFDL climate model, I examine the evolution

Conclusions7
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of Zhang’s mechanism in the MPI-ESM-LR in this chapter, and answer
the guiding question:

Decadal North Atlantic climate variability in an initialized simulation
with the MPI-ESM-LR features the mechanism leading to the AMOC
Fingerprint. Annual mean AMOC and OHT are highly correlated in this
ASSIM model experiment. ASSIM further shows southward propagat-
ing AMOC and OHT phases in the North Atlantic on the time scale of
up to a decade. This gives rise to the convergence of heat in the North
Atlantic subpolar gyre region, and is restricted to the Atlantic North of
40°N. These AMOC and OHT dynamics are very similar to those found
in Zhang and Zhang (2015).

Ocean heat content of the upper 700 m (UOHC) and SSTs in the
North Atlantic are influenced in ASSIM for up to a decade ahead by
the mechanism described by Zhang and Zhang (2015). The most promi-
nent SST anomaly connected to OHT phases at 50°N (OHT50N) is found
in the northeast Atlantic, whereas Zhang and Zhang (2015) find it to be
more centrally located. The mechanism leading to the AMOC Finger-
print is therefore robust in at least two climate models, but its exact loca-
tion is model-dependent. In the MPI-ESM-LR, its eastward displacement
is likely due to an excessively zonal Gulf Stream path. The model-spe-
cific AMOC Fingerprint is in this dissertation called the characteristic SST
pattern. In ASSIM, the characteristic SST pattern explains in ASSIM most
UOHC and SST variability in the North Atlantic, indicating it is the dom-
inant mode of decadal temperature variability there.

Neutral OHT50N phases are only for half a decade connected
to the characteristic SST pattern. Going beyond the original study by
Zhang and Zhang (2015), I conduct a separate analysis of the influence of

⇒ Can the mechanism leading to the AMOC Fingerprint pro-
posed by Zhang and Zhang (2015) be found in the MPI-ESM-LR, and
how is this mechanism characterized?
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strong, weak and neutral phases of OHT50N on North Atlantic SSTs. SSTs
in the northeast Atlantic after neutral OHT50N phases show a weak char-
acteristic pattern up to 5 years into the future. This pattern is likely con-
nected to persistent UOHC phases, supporting Zhang and Zhang (2015)
as well as findings from this chapter that anomalous subpolar ocean
overturning is particularly important in shaping North Atlantic SSTs on
the decadal time scale.

OHT variability in the subpolar North Atlantic influences AMV
variability at least partially. AMV variability is in ASSIM closely related
to the characteristic SST pattern, and subpolar North Atlantic OHT con-
sistently leads the AMV by 8 years. Meanwhile, the physical mechanism
leading to the characteristic SST pattern starts from ocean surface density
anomalies in the Labrador Sea. These could result from atmospheric
forcing. This could reconcile the disagreement by Clement et al. (2015)
and Zhang et al. (2016): this dissertation suggests the AMV as a signal
of ocean-filtered stochastic atmospheric variability with a crucial part for
both elements of the climate system.

The influence of strong and weak phases of OHT50N on North
Atlantic SSTs is asymmetric. Strong phases of OHT in the North
Atlantic propagate southward more consistently than weak ones. As a
result, strong OHT50N phases lead to stronger anomalies of ocean heat
convergence North of 40°N than weak ones. There is a strong ocean-
driven asymmetry between strong and weak overturning phases in the
North Atlantic. As a result, both UOHC and SSTs are strongly influenced
by this asymmetry between strong and weak OHT phases in the sub-
polar North Atlantic. North of 40°N, a strong characteristic SST pattern
arises for several years after strong phases of OHT50N. This pattern is
much weaker after weak OHT50N phases and disappears by the seventh
year. The physical reason for this asymmetry cannot be fully explained
in this dissertation.

Surface heat fluxes dampen asymmetric decadal SST variability
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in the North Atlantic, which arises from strong and weak ocean over-
turning phases. Strong phases of OHT50N are connected to strong sur-
face heat fluxes (SHFs) from the ocean into the atmosphere in the north-
west Atlantic. After weak OHT50N phases, a bipolar pattern of heat
fluxes into the ocean arises with peaks in the Labrador Sea and the east-
ern North Atlantic.

The mechanism leading to the characteristic SST pattern influ-
ences seasonal surface air temperatures over Europe on the decadal
time scale. The surface heat fluxes connected to OHT50N variability indi-
cate that subpolar SST variability influences atmospheric temperatures
(SATs). OHT50N variability is connected to annual and seasonal mean
SAT variability up to 10 years ahead. This influence is particularly strong
in western, northern, and eastern Europe.

The asymmetric connection of strong and weak phases of
OHT50N to NorthAtlantic SSTs can also be found in SATs. Strong
OHT50N phases lead to strong positive annual mean SAT anomalies in
northern Europe around the UK and Scandinavia. After weak OHT50N
phases, a strong negative SAT anomaly arises in southern Scandinavia,
the Baltics, and eastern Europe. This connection is particularly strong in
winter and spring. While strong OHT50N phases are connected to SAT
anomalies in all seasons, weak OHT50N phases show a distinct pattern in
winter and spring, and almost no SAT pattern in the other seasons. This
analysis illustrates the strong influence of the phase of subpolar OHT on
European SAT variability.

Studies showed a connection of strong AMOC anomalies to the
skill of decadal North Atlantic SST hindcasts, based on case studies (Yea-
ger et al., 2012; Robson et al., 2013, 2014). Here, I examine the specula-
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tion by Zhang and Zhang (2015) that the physical mechanism leading
to the characteristic SST pattern modulates decadal SST hindcast skill. I
evaluate systematically the specific influence of the variability of subpo-
lar OHT on decadal North Atlantic SST prediction skill. Findings from
this chapter are very indicative of the credibility of actual decadal SST
predictions in the North Atlantic region. I draw on the findings from the
previous chapter and answer my guiding research question:

The physical mechanism leading to the characteristic SST pattern, i.e.
ocean overturning dynamics, play an important role in modulating the
skill of decadal SST predictions. SST hindcasts show high anomaly cor-
relation coefficients (ACCs), a measure for the skill of hindcasts, in the
area that is dominated by the characteristic SST pattern on the decadal
time scale. When OHT50N is in a neutral phase at the beginning of a
hindcast, ACCs for UOHC and SSTs are much lower at lead years 3-5
and 7-9 than when OHT50N is either particularly strong or weak at the
beginning of a hindcast. Low ACCs can be found at lead years 3-5 for
UOHC and SSTs after neutral OHT50N phases, which is connected to
UOHC persistence. At lead years 7-9, there are no significant ACCs for
UOHC and SST hindcasts on the decadal time scale in the North Atlantic
after neutral OHT50N phases, underscoring that overturning dynamics
are essential in modulating the skill of surface temperature predictions
on the decadal time scale.

The influence of OHT50N variability on ACCs of North Atlantic
SST hindcasts shows an asymmetry similar to the OHT50N influence
on decadal SST variability. UOHC and SST hindcasts show consistently
higher ACCs after strong OHT50N phases than after weak OHT50N
phases. This difference is likely to be significant in the area of the charac-
teristic SST pattern.

⇒ How strongly do ocean overturning dynamics influence the
skill of SST hindcasts in the North Atlantic region?
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Predictable SST anomalies arising from ocean heat convergence
are at all examined lead times balanced by dampening SHFs. The
asymmetry of ACCs after strong and weak OHT50N hases is governed by
two factors: the asymmetric ocean heat convergence signal after strong
and weak OHT50N phases (which leads to differently strong UOHC and
SST anomalies), and the asymmetric surface heat flux patterns following
the strong and weak OHT50N phases.

ACCs are high in the northeast Atlantic after strong OHT50N
phases, and high in the central North Atlantic after weak OHT50N
phases. On the decadal time scale, the effect of SHFs dampening SST
anomalies and consequently ACCs is particularly pronounced. After
weak OHT50N phases, strong SHFs in the eastern part of the charac-
teristic SST pattern mask much of the SST anomaly arising from ocean
variability, while strong SHFs in the western North Atlantic mask some
SST anomaly arising there after strong OHT50N phases. This leads to a
zonal asymmetry in ACCs after strong and weak OHT50N phases on the
decadal time scale.

The model simulations analyzed here show very little significant
ACCs in decadal SAT hindcasts over Europe. However, ACCs for SATs
on the decadal time scale are high in the region of the characteristic SST
pattern. This illustrates that OHT dynamics modulate the skill of SAT
hindcasts at least in that region. While SAT-ACCs are generally limited
over land in this study, some significant ACCs are found over the UK
and western Scandinavia in spring after strong OHT50N phases, and over
eastern Scandinavia in summer after weak OHT50N phases. These are
areas in which SATs are affected at the same time by the characteris-
tic SST pattern, which illustrates that there is potential for improvement
of the skill of decadal predictions of seasonal SATs by using subpolar
North Atlantic OHT as an indicator in a model of higher resolution, more
ensemble members, or a more frequent initialization.
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Assimilation model experiments are a combination of a climate
model and observational data. It is therefore from an assimilation model
experiment alone unclear whether the detected climate variability has to
be interpreted as model variability, observed climate variability, or some-
thing else entirely. To better understand the physical mechanism derived
in chapter 3 and its influence on decadal SST prediction skill shown in
chapter 4, I compare in chapter 5 the climate variability found in ASSIM
to that produced by the non-initialized MPI-ESM-LR, and to the SST
observations data set HadISST. I thus answer the guiding research ques-
tion of this chapter:

The physical mechanism leading to the characteristic SST pattern is
robust within the MPI-ESM-LR. piControl, HIST and RCP4.5 show a
similar mechanism leading to the characteristic SST pattern as ASSIM.
The physical mechanism I find in ASSIM that modulates decadal SST
variability and predictability is therefore not exclusively an artifact of
model initialization.

Climate variability in ASSIM has to be smoothed with a 3-year
running mean to reflect climate variability in the MPI-ESM-LR. The
coherence of annual mean strong OHT50N phases lies well outside the
spread produced by piControl, HIST, HadISST, and both examined RCP
scenarios. ASSIM is therefore unlikely to produce reasonably asymmet-
ric influences of strong and weak phases of OHT50N on annual mean SST
variability in the North Atlantic. However, smoothing the OHT50N and/

Understanding North Atlantic Climate Variability in
the MPI-ESM-LR

7.3

⇒ Is the previously discussed climate variability reasonable with
respect to both model variability produced by the MPI-ESM-LR and
observations?
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or SST time series with a running mean ≥ 3 years places the OHT50N
and SST variability produced by ASSIM within reasonable coherence of
OHT50N and SST phases. This indicates that the findings presented in
this dissertation are within the variability produced by the MPI-ESM-LR,
as I use SST filtered with a 3-year running mean throughout this disser-
tation.

The time scale at which subpolar OHT variability influences
SSTs will likely decrease with global warming. HadISST shows lower
coherence of SST phases in the North Atlantic than the MPI-ESM-LR. The
mechanism leading to the characteristic SST pattern is therefore likely to
have a slightly shorter-lived influence on SSTs in reality than in the MPI-
ESM-LR. Both RCP4.5 and RCP8.5 show shorter coherence of OHT50N
and SST phases than piControl, HIST and ASSIM. In a changing cli-
mate, the characteristic SST pattern will therefore likely vary at a higher
frequency. This might also be true for overall climate variability in the
North Atlantic.

Strong phases of subpolar OHT robustly influence ACCs for
SSTs in the North Atlantic more strongly than weak OHT phases.
According to findings presented in this chapter, the overall conclusions
concerning the influence of OHT50N variability on the skill of SST hind-
cast hold. However, the asymmetry between strong and weak OHT50N
phases is likely to be exaggerated in this study. Nonetheless, the conclu-
sion that strong OHT50N phases influence ACCs for SSTs in the North
Atlantic more favorably than weak OHT50N phases is likely robust.

Conventional decadal climate prediction studies produce one skill
estimate for the past (e.g. Boer et al., 2016). This skill estimate is then

Non-Stationary North Atlantic Surface Temperature
Prediction Skill
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understood to reflect the credibility of any forecast with the examined
prediction system. In chapter 4, however, I show that SST hindcast skill
changes with changing OHT50N in the North Atlantic. These findings
support previous studies (e.g. Brune et al., 2017) in that decadal SST pre-
diction skill in the North Atlantic can be assumed to be time-dependent,
or non-stationary. This, in turn, limits the applicability of hindcast esti-
mates produced for a fixed period in the past for the credibility of indi-
vidual forecasts. In chapter 6, I propose a new approach to the estimation
of the skill of hindcasts that is more applicable to forecasts, answering
the guiding question:

The applicability of hindcast skill estimates for individual forecasts is
limited. AMV hindcast skill varies between ACCs of 0 and 0.8, depend-
ing on the time-horizon that it is evaluated for, the length of the evalua-
tion time window, and lead time. Hindcast skill is generally high for long
evaluation time windows and decreases with shorter evaluation time
windows. I find high skill in the early 20th century, around the 1950s, and
towards the end of the century. Hindcast skill is low around the 1940s.
The estimates of hindcast skill depend therefore on the point in time at
which they are issued - this presents a substantial limitation to all climate
prediction studies that do not account for this issue.

Extending the length of the period over which hindcast skill
is evaluated does not facilitate the translation of hindcast skill into
the credibility of individual forecasts. The changing skill estimate with
length of the evaluation time window show that longer periods of obser-
vational records are needed to produce robust estimates of hindcast skill.
This finding highlights, however, that skill estimates obtained for a long
period of time do not reflect the skill of individual hindcasts within this

⇒ Are mean hindcast skill estimates appropriate to estimate the
credibility of a single temperature forecast in the North Atlantic
region?
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time period, but rather an overall estimate. Shorter evaluation periods
have to be considered to produce a conclusive estimate of hindcast skill
that is representative for all predictions issued in this period.

Individual decadal forecasts of North Atlantic SSTs are likely
credible whenever OHT50N is more than one standard deviation
higher than the mean state at the beginning of the forecast. Strong
phases of subpolar OHT in the North Atlantic consistently lead to skillful
individual hindcasts of the AMV anomaly. This is not the case for neutral
or weak phases of OHT50N, which sometimes lead to skillful AMV hind-
casts and sometimes not.

Other physical mechanisms can likely be used to judge the cred-
ibility of forecasts of other variables in other regions and on different
time scales. Findings presented in this chapter indicate that the mecha-
nism leading to the characteristic SST pattern can be used to judge the
credibility of individual decadal SST forecasts in the North Atlantic. This
implies that other physical mechanisms can be used to judge the credi-
bility of forecasts of other variables in other regions and on different time
scales. This implication needs further investigation in the future, high-
lighting other physical mechanisms, and developing measures of hind-
cast skill that allow for the evaluation of skill for individual years.

I opened this thesis by quoting Klaus Schulze, one of the pioneers
of electronic music: Everything changes, permanently. How boring if it
wouldn’t. I would like to end this dissertation by looking back and recon-
ciling this quote with the findings I presented in this dissertation: What
is changing?

In recent years, an increasing number of studies showed events of

Hindcast Skill versus Forecast Skill: A Shift of
Paradigm?
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strong climate variability to be well predictable on the decadal time scale
(Yeager et al., 2012; Robson et al., 2013; Müller et al., 2014; Robson et al.,
2014). While these case studies implied a change in hindcast skill over
time, the actual time dependence of the skill of hindcasts more than a
year ahead was first shown by Brune et al. (2017) for North Atlantic SSTs.
However, the study by Brune et al. (2017) lacked a specific physical expla-
nation for the non-stationarity of hindcast skill.

By systematically combining both - the time-dependence of predic-
tion skill with a physical mechanism that explains how this time-depen-
dence arises - this dissertation shows for the first time that there are times
at which prediction systems that indicate a high overall hindcast skill
show no skill whatsoever. This is an important finding for the interpre-
tation of existing hindcast studies: any hindcast skill that is found for a
long time period should not be expected from an individual climate fore-
cast in the absence of an indication that that prediction skill is actually
constant over time - which, as this work indicates, is unlikely.

Finally, this work presents an important step towards the estima-
tion of the credibility of a single decadal climate forecast. When it cannot
be known whether hindcast skill estimates produced for a long time
period are representative of the skill of any hindcast within this period,
these hindcasts skill estimates cannot be used to judge the credibility of
a single climate forecast. Physical mechanisms can help judging whether
the credibility of a forecast is high or low. For North Atlantic SSTs, sub-
polar ocean heat transport at the start of the forecast is likely a good indi-
cator of the credibility of a decadal temperature forecast. More research
needs to be done on other regions and other time scales to verify these
results, identifying other physical mechanisms for other regions.

Klaus Schulze’s quote is therefore applicable to this dissertation in
many ways. It does here not only reference changing climate and climate
variability, but also changes in hindcast and forecast skill, and the inter-
play between variability and predictability. I also present evidence that
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the connection between variability and predictability should be expected
to change over time. Finally, findings from this dissertation suggest that
the research on hindcasts itself will have to change in the future to pro-
duce hindcast skill estimates that are translateable into the credibility of
forecasts. Change is therefore the central topic of this work. The physical
mechanisms that connect climate variability to decadal prediction skill
are not trivial to identify, though, and this dissertation only represents
the first attempt to systematically connect the two. There is a lot of work
left to be done, and our understanding of the connection of climate vari-
ability and its prediction is almost certainly going to change in the future.
Which is a good thing - after all, it would be boring if it wouldn’t.
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